

INFORME DE TERMINACIÓN DE PROYECTO DE INVESTIGACIÓN

ANALISIS DE ARQUITECTURAS COLABORATIVAS MULTI-FUENTE
USANDO CODIFICACION DE RED

El Proyecto “Análisis de arquitecturas colaborativas multi-fuente usando codificación
de red” se centró en evaluar los siguientes factores:

1. Evaluar el rendimiento de un sistema basado en multi-fuente colaborativas en
ambientes multi-fuente.

2. Evaluar el rendimiento de una red con múltiples fuentes usando codificación de red.
3. Modelado matemático de una arquitectura jerárquica con nodos fuente-consumidor

colaborativos.
4. Evaluación de una asignación dinámica recursos para la codificación de red.
5. Estudio de técnicas de apredizaje máquina con codificación de red.

El interés por estudiar estos factores nos ha permitido entender el desempeño de la
codificación de red para diferentes arquitecturas de redes con multi-fuentes así como el uso
de técnicas de aprendizaje máquina para encontrar formas más óptimas de realizar la
codificación de red.

Los participantes de este proyecto fueron:
 Dr. Francisco de Asís López Fuentes (responsable del proyecto)
 Dr. Rogelio Hasimoto Beltrán (CIMAT- CONACYT)

El objetivo general que corresponde a “Investigar y analizar una arquitectura multi-fuente
que permitan integrar técnicas de codificación de red y optimizar la difusión de contenidos
en ambientes de redes P2P” fue alcanzado ya que se lograron evaluar los desempeños de la
codificación de red en arquitecturas multi-fuentes.

Las metas planteadas en el proyecto propuesto fueron alcanzadas al obtener los siguientes
resultados:

1. Redes de investigación:
Se generó un fuerte trabajo colaborativo con investigadores de diferentes centros de
investigación a través de la red CONACYT Red en Sistemas y Redes de Próxima
Generación, así como con alumnos interesados en la codificación de red.

2. Modelo matemático
Se propuso un modelo matemático para una arquitectura basada en árboles P2P altamente
colaborativa y escalable hecha de dos componentes principales: 1) Agrupación o
agrupación por pares y 2) Distribución de contenido jerárquico basado en árboles. En el
paso 1), los nodos pares (receptores de contenido) se agrupan en grupos de igual tamaño
mediante el uso de un algoritmo heurístico de restricción de tamaño propuesto basado en k-

means. En el paso 2), los clústeres (que se convierten en los nodos del árbol) se organizan
en una sola arquitectura jerárquica basada en un árbol n-ario, en la que la raíz del árbol
(Clúster raíz) es la más cercana al par fuente, mientras que los clusters intermedio y los
clusters hojas se colocan en el árbol de acuerdo con su retraso de proximidad a los clusters
previamente insertados.

3. Estancia de investigación corta:

Se realizaron dos estancias de investigación corta en el CIMAT-Guanajuato durante el mes
de agosto de 2017 y agosto de 2018. Los gastos de hospedaje y transporte fueron cubiertos
por el CIMAT o por la red temática del CONACYT Red en Sistemas y Redes de Próxima
Generación.

También el alumno Javier Mendoza Almanza hizo una estancia de una semana en el
CIMAT en la ciudad de Guanajuato durante 2017. Los gastos de viáticos fueron cubiertos
por el CIMAT, mientras que los gastos de transporte los cubrió la UAM.

4. Formación de recursos humanos:

El proyecto permitió involucrar a alumnos de licenciatura en Tecnologías y Sistemas de
Información. Se realizaron proyecto terminal de licenciatura donde participaron los
alumnos:

Javier Mendoza Almanza
Raúl Ortega Vallejo – inició su proyecto terminal

Un servicio social donde participó el alumno:

Javier Mendoza Almanza

5. Artículos de investigación:

Los resultados de este proyecto se publicaron en 2 conferencias internacionales de IEEE,
una conferencia internacional EAI, y dos revistas indizadas. Una revista indizada en JCR
con factor de impacto de 2.39 (2018) y otra indizada en Latindex:

1. López-Fuentes, F. A. and Mendoza-Almanza, J.; “Optimal Network Coding based on
Machine Learning Methods for Collaborative Networks,” 6th IEEE Int. Conf. on
Control, Decision and Information Technology, Paris, France, April 2019.

2. Hasimoto-Beltran, R., López-Fuentes, F.A. and Vera-Lopez, M.; “Hierarchical P2P
architecture for efficient content distribution,” Peer-to-Peer networking and
applications, Springer, August 2018, Online ISSN 1936-6450. (JCR, FI = 2.39)

3. López-Fuentes, F. A. and Mendoza-Almanza, J.; “Dynamic Network Coding for
Collaborative Multi-source System,” 9th IEEE Annual Information Technology,

Electronics, and Mobile Communication Conference, Vancouver, BC, Canada,
November 2018.

4. Mendoza-Almanza J., López-Fuentes F. A. and Hasimoto R.; “Practical Network
Coding for Multi-source Scenarios,” Book: Smart Technology, Chapter 14, LNICST,
Springer Nature, Chapter DOI: 10.1007/978-3-319-73323-4_14, 2018.

5. Mendoza-Almanza J. and López-Fuentes, F. A.; “Collaborative Multi-source Scheme
for Multimedia Content Distribution,” Research in Computing Science, Vol. 127, pp.
51-57, 2016, ISSN 1870-4069. (latindex)

Se anexan los resumenes de los artículos como fueron publicados por las editoriales IEEE y
Springer:

López-Fuentes, F. A. and Mendoza-Almanza, J.; “Optimal Network Coding based on
Machine Learning Methods for Collaborative Networks,” 6th IEEE Int. Conf. on Control,
Decision and Information Technology, Paris, France, April 2019.

La asistencia a esta conferencia fue soportada completamente por el Departamento
de Tecnologías de la Información- UAM Cuajimalpa.

Hasimoto-Beltran, R., López-Fuentes, F.A. and Vera-Lopez, M.; “Hierarchical P2P
architecture for efficient content distribution,” Peer-to-Peer networking and
applications, Springer, August 2018, Online ISSN 1936-6450.

López-Fuentes, F. A. and Mendoza-Almanza, J.; “Dynamic Network Coding for
Collaborative Multi-source System,” 9th IEEE Annual Information Technology,
Electronics, and Mobile Communication Conference, Vancouver, BC, Canada,
November 2018.

La asistencia a esta conferencia fue soportada completamente por el Departamento
de Tecnologías de la Información- UAM Cuajimalpa.

5

Mendoza-Almanza J., López-Fuentes F. A. and Hasimoto R.; “Practical Network Coding
for Multi-source Scenarios,” Book: Smart Technology, Chapter 14, LNICST, Springer
Nature, Chapter DOI: 10.1007/978-3-319-73323-4_14, 2018.

La asistencia a esta conferencia en Monterrey NL. fue soportada en parte por la Red
Temática CONACYT Red en Sistemas y Redes de Próxima Generación y por la
Coordinación de la Licenciatura en Tecnologías y Sistemas de Información.

Mendoza-Almanza J. and López-Fuentes, F. A.; “Collaborative Multi-source Scheme for
Multimedia Content Distribution,” Research in Computing Science, Vol. 127, pp. 51-57,
2016, ISSN 1870-4069.

La asistencia del alumno Javier Mendoza Almanza a esta conferencia en Silao Gto.
fue soportada por la Coordinación de Tecnología y Sistemas de Información.



Abstract— Multimedia content distribution over the Internet

has increased significantly during the recent years. Almost 50%

of the world population has access to the Internet, which may

overwhelm its content distribution capacity and saturate

communication links. Network coding is a coding method used

to increase throughput, scalability or resilience in the

communication networks. In this paper is presented a dynamic

system with network coding using on machine learning

technique for collaborative networks. Our network coding

approach is based on XOR logic operations, while collaborative

scheme is supported by a Peer-to-Peer (P2P) network. Our

proposal uses a coordinator server to synchronize all nodes,

and to assign their roles during a network coding operation.

Coordinator server also ensures that the entire process is

completed. Our results show the advantages of combining

network coding with techniques of automatic learning, which

are based on the comparison between decision tree and K-

means. These techniques help to coordinator server to assign

roles to the different servers, in order to guarantee and make

efficient the network coding process.

I. INTRODUCTION

Multimedia content distribution has gained popularity
during the last years. This type of content is generated from
different means such as social networks, mobile devices, etc.,
and different content distribution infrastructures have
emerged to deal with this high demand. Multimedia
consumes a large amount of resources in the system
infrastructure and collaboration between nodes is very
important. However, most of current infrastructures are
centralized and collaboration between nodes is limited. On
the other hand, peer-to-peer (P2P) networks have gained very
popularity during last decades. This fact is due to these
networks present high performance characteristics such as
dynamicity, scalability, multiplicity, efficient content
distribution and ability to search effectively [10].

In this context, a system can fragment and locate a large
multimedia content in different nodes or peers, and users can
retrieve the multimedia content from multiple sources. Multi-
source concept also helps to alleviate the unpredictability
congestion in the Internet, and it is an alternative to provide
smooth video delivery [1], [2]. This paper combines machine
learning techniques with network coding in a collaborative
network with multiple sources to improve video transmission.

F. A. López-Fuentes is with the Information Technology Department,

Universidad Autónoma Metropolitana-Cuajimalpa, Mexico City, 05300,

Mexico (corresponding author to provide phone: 55-58145500; fax: 303-
555-5555; e-mail: flopez@correo.cua.uam.mx).

J. Mendoza-Almanza was with Universidad Autónoma Metropolitana-

Cuajimalpa, Mexico City, 05300, Mexico (e-mail: javier-
lvr09@hotmail.com).

To reach an acceptable video quality, a system should offer
high data rate, low-latency and high throughput, and network
coding can help in these tasks. Network coding is done in the
intermediate nodes [7], [8] and [9]. In this work, P2P
networks are used as collaborative platform to reach
distribution of load and duties between all participating
nodes. We aim to implement a balanced network coding
between all participating peer. To reach this goal, we extend
cooperation between participating peers by using their
processing and uploading capabilities instead of limiting the
cooperation of peers to only their storage capacity. On the
other hand using network coding, the intermediate nodes
send out packets that are combinations of previously received
packets instead of simply forwarding them. These packet
manipulations are linear operations over elements of a finite
field. Traditionally, intermediate nodes perform network
coding in a static way. This means that only specific nodes
can do network coding. In contrast, in a dynamic approach
any node in the system can do network coding. However,
simple dynamic approach has different disadvantages. For
example, some of the current systems have a coordination
server that allows for balancing and different roles in the
nodes of the network, but this is not useful when the system
has a large number of processes at the same time and there is
not enough active nodes. When in a system the coordinator
server does not have enough nodes, it should wait for nodes
finish their current role to give they a new one. The system
does not take into account the capacity of the nodes, and
these do not take full advantage of the resources since in
many cases the nodes can play different roles at the same
time, which would imply an improvement over time of the
system. In this paper we present an extended version of our
work presented in [17]. In this case we explore machine
learning techniques as a way to reach an optimal allocation of
network coding operations in collaborative networks. We
believe that a machine learning model can predict the
performance of the nodes in order to improve the
performance of the system.

To apply machine learning techniques in a scheme with
network coding is required that all participating nodes take
different roles during a network coding operation. These
roles are: receiver, encoder, sender, relay node. To reach a
dynamic participation of all nodes our proposal considers a
collaborative approach supported by a P2P network. In this
work, two models of machine learning have been used which
are decision tree and k-means. The main objective is to
predict the number of roles that a node can execute at the
same time. As a second objective, we would like to know the
ideal capabilities required by a node to play a certain number
of roles at the same time in terms of its RAM, CPU and disk
in order to take advantage of the resources of the nodes and

Optimal Network Coding based on Machine Learning Methods for

Collaborative Networks

Javier Mendoza-Almanza, Francisco de Asís López-Fuentes

978-1-7281-0521-5/19/$31.00 ©2019 IEEE

2019 6th International Conference on Control, Decision and
Information Technologies (CoDIT’19) | Paris, France / April 23-26, 2019

-1598-

Figure 1. Case for a communication network. a) Capacity of the links,

b) Traditional approach and c) approach using network coding.

avoid saturating them, which would make the process of
network coding. We evaluate our proposed scheme using a
prototype implemented in Linux where the communications
between all nodes are established via TCP (Transmission
Control Protocol). Our proposal is done for network coding
based on XOR operation.

The rest of this paper is organized as follows. Section II
presents the main idea of network coding. Then, we describe
our proposed network coding model in Section III. An
implementation of our proposed model using machine
learning techniques over a P2P network is presented in
Section IV. In this section we also compare performance of
our proposal using decision tree and k-means techniques.
Conclusions are given in Section V.

II. NETWORK CODING CONCEPT

Data communication can be more efficient if data is sent
in form of scrambled packets instead of sending plain data.
Scrambled operation is done in a completely random fashion.
Network coding was introduced by Ahlswede at al [3] as a
technique for the diffusion of the information in the field of
information theory. This technique introduces several
benefits in the communication networks such as throughput
enhancement, increase of capacity, robustness, tomography
and security [6-7, 11]. Network coding employs coding at
the intermediate nodes to increase the flow of packets
without exceeding the link capacity. To explain network
coding concept let’s to consider the butterfly network shown
in Fig. 1. In this scheme there are a source node and two
receiver nodes. Figure 1a shows the capacity of each edge is
1. We can observe that the value of the maximum flow of S
to any receiver, either R1 or R2 is equal to two. In Fig. 1b
source S sends two bits, b1 to R1 and b2 to R2
simultaneously. In this scheme, intermediate node 3 only
replicates and sends out the bits received from nodes 1 and 2.
We can see that link between node 3 and node 4 needs two
time units to send b1 and b2 to node 4. On the other hand,
Fig. 1c shows the communication network with network
coding, where operator ⊕ is used to denote sum module 2.
Thus, the receiver R1 can recover the two bits, b1 and b2,
except that b2 must be retrieved from b1⊕b2. Similarly, R2
can recover the two bits. In this case, network coding is
applied at node 3. Another important point is that the
multicast rate increases, because in traditional transmission
the rate is 1 bit/time unit, whereas applying network coding
the rate increases to 2 bits/time unit.

The most common benefits of using network coding in a
communication network are [6-7, 10]: Throughput
enhancement can be achieved by sending more information
using fewer packets. Reduction of packet loss is possible
because overflow, link outage and collision are avoided by
applying network coding at intermediate nodes. Increase of
security can be reached by sending scrambled data. Thus,
attackers are not able to find out the original data. Also.
Network coding helps to improve robustness in the
communication networks.

Network coding concept can be applied at different layers
of TCP/IP model. In this paper, network coding is applied in
the application layer, which provides services for application
programs. Multicast protocol in this layer is called

Application Layer Multicast (ALM) protocol, and it is
implemented at end hosts instead of network routers.
However, ALM protocol is affected by delay, throughput and
security issues [14]. To deal these issues, network coding is
implemented at end hosts as an application program. Thus,
our network coding solution does not require any
infrastructure support, and can easily be deployed with ALM
protocol over the Internet.

Several applications have integrated network coding to
improve their performance. Some example are sensor
networks, wireless relay networks, wireless local network,
MANETs, ad-hoc networks and wireless mesh networks [12].
In most of these cases, network coding is used to provide
reliable broadcasting, efficient data dissemination, file
sharing, multimedia streaming and recovery data.

III. PROPOSED MODEL

In this section we introduce our proposed model. As
background of our model, we give a briefly overview about
different schemes involved with our proposal. Our
collaborative multi-source system uses different servers and
peers to distribute different types of files.

A. Multi-source

In our collaborative multi-source model each source
distributes its content to the requesting peers. This scenario
is shown in figure 2. Our solution assumes that sources are
independent of each other, and each source distribute a
specific type of files. For example, source S1 distributes
video files, while S2 distributes music files, S3 distributes

CoDIT'19 is technical sponsored by: IEEE Systems, Man, and Cybernetics Society

CoDIT’19 | Paris, France - April 23-26, 2019 -1599-

photos files and S4 distributes PDF files. We use this
scheme to implement network coding. In Figure 2, we can
see that each peer establishes communication with only a
source, and all peers (P1, P2, P3 and P4) establish
communication one another, and all peers can share the files
received from the sources. In this way, a peer can act as a
server when it distributes the received file from the original
source, and as a client when it requests a file from another
peer. In server mode, a peer must respond to all received
requests. In each peer is stored the IP address of all nodes
and their shared files in a matrix. When a peer (in server
mode) receives a request, it creates a thread to attend the
request. For each request a thread is created to respond to all
at the same time. This thread establishes a communication
with the peer that wants to share files or synchronize with
the server. Each node uses different matrices to store
information of the connected nodes and their shared files.
We use the IP address of the peers and the name of shared
files to organize information in these matrices. These
matrices are synchronized with the different sources when
the peer wants some content from another peer. A peer
creates different threads to request a file. These threads are
used to synchronize the matrices and to update its
information (IP address and shared files) only of the active
nodes in the system. After the matrices have been updated,
the requesting peer establishes via threads a connection with
peers where the requested files are available. Different
threads can be created by a requesting peer to receive
different files from different supplier peers. Also, a peer can
distribute a file to all peers that request it. A more detailed
explanation about this multi-source architecture can be
found in [4].

B. Static network coding

A collaborative multi-source architecture based on P2P
networks can perform network coding. In this section, we
briefly explain a static network coding previously worked
and presented in [5]. In this case, source and peers are
organized as is shown in figure 3. We use a traditional
network coding approach based on the butterfly concept. We

have called this solution as static network coding, because
each peer in the architecture has only a specific task to do
during all the network coding process. In figure 3, peer P1
receives a video v1 from source S1 and a song m1 from
source S2. After this, peer P1 reads bit by bit from both files
and applies the XOR operation to create an encoded file. Sink
peers P3 and P4 receive the encoded file and create a thread
to one of the source peers to request an original file. Thus, P3
requests video v1 to source S1 to retrieve song m1 from
v1⊕m1, and P4 requests song m1 to source S2 to retrieve
video v1 from v1⊕m1, too. For each bit that reads from both
files, the peers apply the XOR operation and the result will be
stored in a new file. Different experiments presented in [5]
show that a system using traditional network coding can
improve its bandwidth gain around 33% compared to a
system where network coding is not used.

C. Dynamic network coding

Traditional network coding presents some limitations
because encoder role cannot be shared between all peers in a
collaborative way. This fact introduces saturation of tasks in
a unique peer. To avoid this scenario in [17] is presented a
dynamic network coding approach. This dynamic scheme
incorporates a coordinator server, which assigns different
roles to the peers in order to avoid the saturation of encoding
tasks in a unique peer. Coordinator server has two matrices,
first matrix stores the address of all peers within the network,
while second matrix stores the roles of all peers during the
network coding process. Each peer has six different roles
which are source1, source2, encoder, distributor, receiver1
and receiver2, which makes this matrix, is to save by process
which nodes are occupying that role, to avoid saturating
them. Figure 4 shows these types of roles for each peer. The
operation of dynamic network coding is as follows. After to
receive a request from a peer, coordinator server
automatically assigns roles to all active peers in the system.
To run network coding is important that coordinator server
define which peers will be the receiver (sink) peers. Once the
sources and receivers are defined, the coordinador server
obtains the nodes that are not present in the process and
makes two selections of random way to obtain two IP
addresses. Then, a peer is assigned as encoder, while other

Figure 2. A collaborative multi-source scheme

Figure 3. Network coding in a multi-source scenario. Peer P1 does

network coding, and P3 and P4 are the sink nodes.

CoDIT'19 is technical sponsored by: IEEE Systems, Man, and Cybernetics Society

CoDIT’19 | Paris, France - April 23-26, 2019 -1600-

peer assigns is assigned as a distributor. After all necessary
peers have been obtained, the coordinator server stores their
IP addresses in a process matrix and creates threads to
sources to notify their role. When all peers have finished their
assigned role, coordinator server destroys all communication
threads all peers are released.

D. Machine Learning

 Machine learning has been widely used to solve several

challenges in many fields. In this section, the models to be

used are briefly explained. For the sake of completeness, we

provide a brief introduction of supervised machine learning

for classification here.

D.1. Decision tree

A decision tree is an analytical method that proposes

specific alternatives that allow the best decision making,

taking into account benefits, risks, costs and all those

variables that are wished to be taken into account during the

analysis. In machine learning, a decision tree is a learning

model that is based on a supervised learning algorithm

which allows classifying or performing the regression task.

Decision trees have a root node that can be fragmented

into two or more nodes and then those nodes into two or

more to reach the leaves. The implementation of a tree with

few variables is simple. However, what happens if the

variables are 15 or more, we would have to make hundreds

or thousands of combinations and it is very complex. Due to

the complexity of finding a solution, machine learning is

implemented because it allows us to obtain an optimal

decision tree for the most accurate decision making from a

probabilistic point of view.

At the beginning, a decision tree must take into account

all its variables and define which of them are the most

important to define a scheme and obtain optimal results. For

this, each subdivision between the different possible trees

must be evaluated and, from these, the root node and,

subsequently, the subsequent ones. The algorithm measures

the predictions obtained in different ways and evaluates

them to obtain the best scheme. Different metrics are used to

provide a measure of the quality of the division, among the

best known we can mention the gain of information and the

Gini impurity [15]. The gain of information seeks that the

categorical variables estimate the information provided by

each one of this, in such a way that the uncertainty value of

which the entropy is defined can be obtained. On the other

hand, impurity Gini is used for variables with continuous

values since what is sought is to measure the degree of

impurity, that is, how disordered or mixed the nodes are.

D.2. K-means

On the other hand, K-means is an unsupervised

clustering algorithm, which seeks to find the K clusters

(groups) among the different input data [16]. K-means

algorithm works iteratively to assign a point, which is a

cluster based on the characteristics of the database. K-means

algorithm allows finding centroids of each of the clusters

which are used to classify new samples. These also allow

finding the labels for the training data set, that is, each label

be-longs to each one of the formed clusters.
In our model, the clusters are defined in an organic way,

and adjust their position in each iteration until the algorithm
converges. After the centroids are found, we analyze the
unique characteristics among them, that is to say, what
different characteristics present a cluster respect to others. As
in the decision tree, k-means algorithm looks to predict how
many processes can be executed in each node based on the
same database and with the RAM, DISK and CPU variables.
The K-means algorithm, unlike the decision tree, is an
algorithm whose inputs must be pure numerical values. This
algorithm operates in our architecture with network coding as
following. Initially, it is necessary to specify how many
nodes are to be created. Once this number has been defined
the algorithm assigns random coordinates to each centroid.

Then, an iterative process is performed in each centroid,

where each iteration has two steps. First step assignments

the data while the second step updates the centroid. The

assignment of data consists in that for each tuple of the

database it is assigned to the nearest centroid based on the

square Euclidean distance. The update of the centroid in this

step means that current centroids of each cluster are

recalculated based on the average of all the points assigned

in the first step. These steps are done until any of the

following rules are not complied:

 there are no changes in the points assigned to each

group,

 the maximum number of iterations is reached,

 the sum of their Euclidean distances is reduced.

IV. EVALUATION AND RESULTS

To evaluate our system with machine learning

techniques, we have implemented the decision tree and the

k-means models in the Python language. Our goal is to

Figure 4. Coordinator server interacts with nodes to define its roles

during a dynamic network coding operation.

CoDIT'19 is technical sponsored by: IEEE Systems, Man, and Cybernetics Society

CoDIT’19 | Paris, France - April 23-26, 2019 -1601-

Figure 5. Interaction between processes for dynamic network
coding

Figure 6. Confusion matrix for dynamic network coding using
decision tree

Figure 7. Centroids obtained after running the K-means algorithm

for 6 clusters

predict the number of functions that a node can execute at

the same time and the ideal capabilities for each node to

perform several roles at the same time. Initially, system

creates a database to store information about each node. We

analyze the performance of each node in operation with

respect to its processing capacity, RAM and disk. The

database stores 9 variables which are the IP address, Role

(which corresponds 1 = source, 2 = receiver, 3 = encoder

and 4 = distributor), RAM (percentage of RAM used during

the process), CPU (percentage of CPU used during the

process and Disk (percentage of disco used during the

process), the number of processes performed by the node,

processor frequency, RAM capacity and hard disk capacity

available in each node. Using information from RAM, CPU

and disk, the system tries to predict the number of roles that

can be implemented in each node. We can display

information of the database for each attribute of these nodes.

Figure 5 shows how each node is classified with respect to

the number of processes; we can see eight colors which

represent the different numbers of processes. The axes

represent the variables of disk, CPU and RAM, while the

image shows how the nodes are scattered. Based on the

number of processes the nodes can execute and taking the

variables already mentioned. We evaluate the machine

learning methods for dynamic network coding. Our first

experiment evaluates dynamic network coding using the

decision tree method. In this case, the precision of algorithm

is 1. The confusion matrix for the decision tree is shown in

figure 6. From the confusion matrix we can observe that the

prediction was correct for all the nodes. The average

absolute error for dynamic network coding using a decision

tree is 0.0. Results obtained from this experiments show that

the first variable considered to classify is the RAM. Our

second experiment applies the K-means method for dynamic

network coding. In this case, we need to determine the K

value. Results from this experiment obtain a K value of 6.

Thus, K-means algorithm is executed with 6 clusters in order

to obtain the labels and centroids. We have plotted our

results obtained from K-means algorithm in 3D graphic

using different colors for each clusters in order to observe

some difference between them. A star indicates the centroids

of each cluster. Our obtained 3D graphic is shown in figure

7. We can observe how the K-Means algorithm with 6

clusters has grouped the different nodes by the number of

processes. Also, we can know the number of users in each

cluster. We determinate that K-means algorithm has a

precision of 0.8855932203.

Similar to decision tree case, we obtain the confusion

matrix of figure 8 using K-means algorithm. We can observe

that the model classified well, in the confusion matrix for

nodes with 1 process, for nodes with 2 processes, correctly

classify 51 of 61, for nodes with 3 processes correctly

classify 52 of 80, for nodes with 4 processes classify all

correctly, for nodes with 5 process classify all correctly, for

nodes with 6 processes correctly classify 11 of 16, for nodes

with 7 process correctly classify 9 of 13 and for nodes with 8

processes 1 correctly classify 4 of 11.
On the other hand, information obtained from the

correlation matrix shows that the classification was mostly

correct done for nodes with 1, 2, 3, 4, 5, 6 and 7 processes
while for nodes with 8 processes classification is not
correctly done. Average absolute error using K-means
algorithm is 0.1419491525423729.

CoDIT'19 is technical sponsored by: IEEE Systems, Man, and Cybernetics Society

CoDIT’19 | Paris, France - April 23-26, 2019 -1602-

Based on the results obtained by each of the machine
learning algorithms, we can observe that the decision tree
presents a better performance than K-means to predict the
number of roles that a node can execute at the same time,
because decision tree has an average absolute error of zero,
and its confusion matrix shows no error. Likewise, the
coordinating server each one that will initiate a network
coding process, assigns roles based on the state in which each
node is located depending on the RAM, CPU, disk and
number of processes that it is carrying out, which has allowed
that most processes are carried efficiently and that servers are
not saturated, which has allowed the system to have better
load balancing, streamline processes and take advantage of
node resources.

V. CONCLUSION

Network coding has had a positive impact on modern

communication networks, and we can found several

application areas of network coding in the literature. In this

work, we have evaluated the impact of combining dynamic

network coding with techniques of machine learning. In this

scenario all nodes in the networks can perform network

coding. This vision introduces several benefits in a

collaborative system because the nodes not only share files

but also processing capacity in all participating nodes. Also

there is a best load balancing related to processing. In this

work results report that the best technique that allows the

coordinator server to determine the most optimal way to use

the resources of the peers using machine learning is the

decision tree. Using decision trees, the coordinator server

can assign in a more optimal way the roles of each peer, and

the number of times a peer can take that role during dynamic

network coding operations. In this case the decision tree

presents a better performance than the K-means technique.

Performing an optimal allocation of resources and roles in

the system prevents the nodes from becoming saturated or

falling due to overload during network coding operations. As

future work we plan to implement algorithms to synchronize

the matrices and pass all the matrices to distributed

databases. The system can also be made more robust by

implementing some security mechanisms.

REFERENCES

[1] H. Pucha, G. d. Andersen, and M. Kaminsky. “Exploiting Similarity for

Multi-Source Downloads Using File Handprints,” 4th USENIX NSDI
'07, Cambridge, MA, USA April 2007.

[2] F. A. López-Fuentes, and E. Steinbach, “Multi-source video multicast in

peer-to-peer networks,” Proc. of the IEEE International Symposium
on Parallel and Distributed Processing, pp. 1- 8, Miami, FL, USA,

2008.

[3] R. Ahlswede, N. Cai, S.-Y. Li, and R. W. Yeung, “Network information
flow,” IEEE Trans. Inform. Theory, 46, 1204–1216, 2000.

[4] J. Mendoza-Almanza, and F. A. López-Fuentes, “Collaborative Multi-

source Scheme for Multimedia Content Distribution,” WITCOM
2016, Silao, Gto. México, 2016.

[5] J. Mendoza-Almanza, F. A. López-Fuentes, R. Hasimoto-Beltran,

“Practical Network Coding for Multi-source Scenarios,” Smart
Technology, Springer, pp. 141-148, 2018.

[6] L. Keller, E. Atsan, K. Argyraki and C. Fragouli, “SenseCode: Network

Coding for Reliable Sensor Networks,” Tech. Rep. 2009, Ecole
Polytechnique Federale Lausanne (EPFL). Last updated July, 2010.

[7] P. Chou, Y. Wu and K. Jain, Practical network coding, 51st Allerton

Conf. Communication, Control and Computation, Monticello, IL,
USA, 2003.

[8] C. Gkantsidis and P. R. Rodriguez, “Network Coding for Large Scale

Content Distribution,” IEEE INFOCOM 2005, Miami, FL, USA, 2005
2235–2245.

[9] J. K. Sundararajan, D. Shah, M. Medard, M. Mitzenmacher and J.

Barros, “Network coding meets TCP,” IEEE INFOCOMM 2009, Rio
de Janeiro, Brazil, 280–288, 2009.

[10] S. Surati, D. C. Jinwala and S. Garg, “A survey of simulators for P2P

overlay networks with a case study of the P2P tree overlay using an
event-driven simulator,” Engineering Science and Technology, 20

(2017), pp. 705–720.

[11] T. Matsuda, T. Noguchi, and T. Takine, “Survey of network coding
and its applications,” IEICE Transactions on

Communications, 94(3), 698–717, 2011.

[12] F. Jamil, A. Javaid, T. Umer, E. and M. H. Rehmani, “A
comprehensive survey of network coding in vehicular ad-hoc

networks,” Wireless Networks, 23(8), 2017, pp. 2395–2414.

[13] D.Nguyen, C. Nguyen, T. Duong-Ba, H. Nguyen, A. Nguyen and T.
Tran, “Joint network coding and machine learning for error-prone

wireless broadcast,” IEEE 7th Annual Computing and Communication

Workshop and Conference (CCWC), 2017.
[14] Z. Yang, M. Li, and W. Lou, “A network coding approach to reliable

broadcast in wireless mesh networks,” Wireless algorithms, systems,

and applications, 2009, pp. 234–243.
[15] L. Rokach and O. Maimon, “A Top-down induction of decision trees

classifiers-a survey,” IEEE Transactions on Systems, Man, and

Cybernetics, Part C. 35 (4), pp. 476–487, 2005.
[16] A. K. Jain, “Data Clustering: 50 Years Beyond K-means,” Pattern

Recognition Letters 31 (8), pp. 651–666, 2010.

[17] F. A. López-Fuentes and J. Mendoza-Almanza, “Dynamic Network
Coding for Collaborative Multisource System,” IEEE 9th Annual

Information Technology, Electronics and Mobile Communication
Conference (IEMCON), 2018.

Figure 8. Confusion matrix for dynamic network coding using

decision tree

CoDIT'19 is technical sponsored by: IEEE Systems, Man, and Cybernetics Society

CoDIT’19 | Paris, France - April 23-26, 2019 -1603-

Hierarchical P2P architecture for efficient content distribution

Rogelio Hasimoto-Beltran1
& Francisco de Asís Lopez-Fuentes2 & Misael Vera-Lopez2

Received: 31 August 2017 /Accepted: 6 July 2018 /Published online: 1 August 2018
Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract
Mutualcast is a one-to-many (peer-to-peer) scheme for content distribution that maximizes the overall throughput during a
broadacast session. It is based on a fully-connected graph (full mesh topology), which introduces benefits such as robustness
or simultaneous transmission from/to multiple devices. The main disadvantage of Mutualcast is scalability; it is constraint to a
small P2P group for content distribution. In this paper, we make Mutualcast scalable. We propose a highly collaborative and
scalable P2P tree-based architecture made of two main components: 1) Peer grouping or clustering and 2) Hierarchical tree-based
content distribution. In step 1), peer nodes (content receivers) are grouped into equal-size clusters by using a proposed heuristic
size-constrained algorithm based on k-means. In step 2), clusters (which become the nodes of the tree) are organized into a single
hierarchical n-ary tree-based architecture, in which the root of the tree (Root Cluster) is the one closest to source peer, while
intermediate and leaf clusters are positioned in the tree according to their delay-proximity to previously inserted clusters. During
content distribution, the root cluster receives the blocks of content before any other cluster in the tree and directly from (and only
from) the source peer; blocks are then passed on to the next hierarchical level down the tree in order (higher levels of the tree
receive the content before lower levels). Inter-clusters and intra-clusters content distribution is performed concurrently and takes
into account peers upload/download capacities to relay blocks of content. The evaluation of our hierarchical P2P architecture
concentrates on the following metrics: scalability of the systems, overall end-to-end delay distribution, and efficient cluster size.
Finally, our architecture is compared against two well-known P2P technologies in the literature, Super-Peer and Kademlia.

Keywords Peer-to-peer networks . Videomulticast . Content distribution . Clustering

1 Introduction

Multimedia content distribution over the Internet has in-
creased at a very fast rate with significant impact on today’s
global economy. Popular services such as videoconferencing
and Internet Protocol Television (IPTV) markets are expected
to reach USD 7.94 and 95.9 global Billion by the 2020s,
respectively [1, 2]. These services make use of media
multicast technologies where information is addressed to a
group of destination computers simultaneously using one-to-
one (unicast) or one-to-many (multicast) schemes. Research
teams in academia and industry worldwide are making signif-
icant efforts to innovate multicast architectures to address the
challenges of a rapidly increasing market.

Traditionally, Internet Protocol Multicast (IPM) has been
proposed as an efficient solution for one-to-many media dis-
semination [3]. IPM is more efficient than unicast due to its
reduced transmission overhead from the sender to all re-
ceivers. IPM decreases traffic by simultaneously distributing
a single copy of data packets to thousands of users through
networks routers. However, IPM has not been fully deployed
in the Internet due to network control and management issues
raised by Internet Service Providers (ISP). Thus, the deploy-
ment of IP multicast is currently limited to local area net-
works, and a handful of ISPs networks [4]. To address these
issues, researchers have proposed an application level solution
as an alternative to implement IPM [5, 6]. For example, in
Application Layer Multicast (ALM), all tasks are implement-
ed by collaborative work in the end-users exclusively, while
the network infrastructure is kept fixed. ALM approaches pro-
vide more flexibility and are easier to deploy than those re-
quiring network router multicast support.

In addition to ALM technology, peer-to-peer (P2P) com-
puting technology has emerged as a novel paradigm to face
some of the limitations of the client-server model [7]. The end

* Francisco de Asís Lopez-Fuentes
flopez@correo.cua.uam.mx

1 Centro de Investigación en Matemáticas, A.C, Guanajuato, Mexico
2 Universidad Autónoma Metropolitana, Mexico City, Mexico

Peer-to-Peer Networking and Applications (2019) 12:724–739
https://doi.org/10.1007/s12083-018-0668-7

http://crossmark.crossref.org/dialog/?doi=10.1007/s12083-018-0668-7&domain=pdf
http://orcid.org/0000-0003-2468-303X
mailto:flopez@correo.cua.uam.mx

users provide all the communication infrastructure needed, so
dedicated infrastructure is not required. Each user provides a
communication node, and all the nodes comprise a network
abstraction on top of the physical network known as an over-
lay network, which is independent of the underlying hardware
network implementation. In the P2P systems, each peer can
take the role of both server and client at the same time, so there
is no need for dedicated servers. Due to the sharing of peer
resources, the ALM scheme is an effective means for
conducting the cooperative P2P communications. Namely,
during a multicast session, peers contribute their resources to
relay the media to others. In this way, as a new peer arrives to
the P2P system, the demand is increased, but the overall ca-
pacity also increases. This feature is not available in a system
based on a client-server model. In a P2P multicast system, the
media must be delivered to all requesting peers with high
quality and minimal delay. An overlay P2P multicast does
not require any router support and is the most flexibility and
adaptable to diverse requirements from these applications.

Most P2Pmulticast implementation algorithms can be clas-
sified according to the data structure used to support packet
distribution (i.e. trees, forests, or fully-connected graph) [5]. In
conventional tree-based distribution algorithms, the peers
placed as interior nodes redistribute data content, while the
peers placed as leaf nodes only receive data. Although the
multicast-tree based scheme is highly scalable [8–10], it is
not maximally efficient in collaborative environments, be-
cause the upload capacity of the leaf peers is not used during
amulticast session. The full upload capacity of all participating
peers is required in order to achieve maximum throughput. A
possible solution to increase efficiency consists on construct-
ingmultiple concurrent trees, where peers contribute with their
upload capacity in at least one tree or in the construction of a
fully-connected network. A drawback of using a fully-
connected graph (or mesh architecture) is that the number of
connections is proportional to the number of peers, because
each peer has to forward its received blocks from source to all
other peers. Mesh-based approaches also have high control
overhead due to data scheduling and limitations for delay sen-
sitive applications when the participating peers are located in
different geographical locations. On the other hand, the dy-
namic behavior of peers in P2P systems is one of the major
challenges. Since peers are transient in nature, once a parent
peer departs from the multicast system [5], the receivers re-
ceiving streaming content from that parent peer might suffer a
temporal interruption in the content transmission.

In this paper, we propose a fully collaborative and scalable
P2P architecture which involves strong cooperation between
participating peers during the content distribution from a
source to multiple peers. Participating peers are organized into
different clusters or groups based on delay-proximity. Peer
delay-proximity is exploited in our proposed scheme in order
to form a fully hierarchical cluster of peers interconnected via

a single n-ary tree [11], with excellent content propagation
time. The source-peer (root of the tree) divides the content
into blocks and distributes different blocks to all peers in the
highest hierarchical cluster (root cluster), so that each peer
within the cluster contributes its redistribution capacity by
forwarding the receiving blocks to the rest of peers within its
own group and receiving at the same time the rest of blocks
not directly obtained from the source peer. An n-subset of
peers within the cluster is designated as source for the n lower
clusters in the next set of clusters down the hierarchy tree
structure, that is, one peer is designated as source for each
receiving cluster. The process continues in the same way, until
all cluster leaves are reached. We evaluate our proposed archi-
tecture based on the overall end-to-end delay distribution to all
peers, tree-based scalability, and cluster size. A comparison
against two well-known P2P technologies in the literature,
such as Super-Peer [12] and Kademlia [13] is presented.

The remainder of this paper is organized as follows. We
introduce and discuss some collaborative multicast ap-
proaches in Section 2. We briefly explain how to build the
collection of clusters connected via a simple tree in our pro-
posed architecture in Section 3. How the collaborative archi-
tecture is implemented in the simulator is explained in Section
4. In Section 5, we evaluate the performance of our collabo-
rative architecture against other content distribution schemes.
Section 6 concludes the paper.

2 Collaborative multicast schemes

In this section, we describe the main technologies our scheme
is based on: mesh-based approaches (such as Mutualcast) and
tree-based approaches. Mutualcast has shown to be a scheme
that maximizes the overall throughput during a multicast ses-
sion. In addition, Mutualcast is based on a fully-connected
graph (full mesh topology), which introduce benefits such as
robustness or simultaneous transmission from multiple de-
vices. On the other hand, a tree-based scheme introduces sev-
eral benefits such as scalability, reduced end-to end delay and
easy maintenance. Our aim is to reach shorter end-to-end de-
livery time, improve scalability and low resources consump-
tion by merging these two technologies into an efficient con-
tent distribution scheme.

2.1 Tree-based approaches

In a tree-based approach, an overlay construction mechanism
organizes participating peers into a single tree whose root is
located at the source node. The participating peers are orga-
nized into a single tree following their classification as interior
node or leaf node. In a tree-based topology, the source peer
sends the data to the requesting peers on the first level, which
then forward the data to the requesting peers located on the

Peer-to-Peer Netw. Appl. (2019) 12:724–739 725

following level down the tree structure and so on until
reaching the leaf peers. In this configuration, a video stream
is pushed from a parent router to its children routers along a
well-defined route. In this way, the multicast tree for content
distribution uses the upload capacity of the peers located on
the intermediate levels. However, the upload capacity of the
leaf peers is not used. Although a tree approach probably
represents the most effective distribution structure in terms
of bandwidth and delay optimization [14], this configuration
has an inherent drawback because all the burden generated by
forwarding multicast messages is carried out by a relative
small number of interior nodes.

2.2 Mesh-based approaches

In a mesh-based overlay, a peer can concurrently receive data
from different senders, each contributing a portion of its up-
load capacity. Additionally, the requesting peers can send and
also receive data from each other. Video data in a mesh-based
P2P multicast is available in multiple neighboring peers, with
a node having to pull data to avoid significant redundancies,
while in a forest based overlay the data is pushed from a parent
peer to many child peers. Due to the dynamic and unpredict-
able behavior of peers, the main challenge of a mesh-based
overlay is how to select the proper senders [15] and how to
cooperate and schedule the received data in the requesting
peers. In a collaborative environment such as a P2P network,
the participating peers contribute with resources proportional
to the benefits they obtain from the system. Specifically, in an
application layer multicast, the peers expect that the
forwarding load will be shared among all participants [6].
However, a multicast based on a single tree does not match
well with these cooperation expectations, because a small
number of interior peers carries the forwarding multicast traf-
fic, while the upload capacities of a large number of leaf peers
are not used. This is a critical problem for applications with
high bandwidth requirements such as video or bulk file distri-
bution, because many interior nodes in the multicast tree may
not have the required upload capacity. To face these chal-
lenges, our proposed scheme adopts a tree structure as the
global structure but incorporates small mesh clusters on each
level of our single distribution tree. Clusters are an elementary
unit in this hierarchical architecture, which involves one
source peer and several requesting peers. The peers inside a
cluster are fully connected, and each peer inside a cluster is a
receiving and forwarding peer at the same time. Due to the fact
that the upload capacity of all peers is also used, the bandwidth
consumption from the source can be reduced.

2.3 Hierarchical clustering approaches

Tree and mesh overlay topologies have been found not suitable
for large scale dynamic P2P networks; they become inefficient

and involve high control overhead. The concept of hierarchical
clustering has emerged as a new alternative in which, peers are
grouped into clusters and clusters into an organized tree topolo-
gy. In NICE scheme [9], a balanced tree of clusters is built, in
which all peers are part of the lowest layer including the source
peer. Higher layers of the tree are represented by corresponding
cluster centroids of lower layers, in this way the root of the tree
is the centroid of all cluster centroids of lower layers. Thismodel
simplifies the insertion of peers in the hierarchical tree. NICE
uses the head to forward the content to its subordinates, thus
incurring a high bottleneck. Additionally, NICE tree-structure is
fixed and not optimal; it does not provide the best low-latency
distribution tree. Broadly speaking, it becomes a special case of
our proposed hierarchical scheme. An extension of NICE is
presented in [16], called Zigzag protocol. It is derived from
the same balanced multicast tree developed in NICE, with a
modified intra-cluster communication strategy. In this new strat-
egy, intra-cluster peer communication is not allowed and each
peer must relay completely to subordinate cluster or peers.
Zigzag extends the nomenclature of the administrative organi-
zation of peers, claiming a reduced control overhead compared
to NICE. One of the main drawbacks of Zigzag is peer-inser-
tions, which occurs whenever there is place available in a clus-
ter, affecting the transmission delay. A more recent scheme
named TURINstream [17], combines a tree structured P2P vid-
eo streaming scheme with Multiple Description Coding (MDC)
to achieve low-delays, robustness to peer dynamics and limited
protocol overhead. In MDC, video is composed by independent
and complementary descriptions which can be decoded inde-
pendently, yielding the base video quality (themore descriptions
are received the better the quality of the video). The advantage
of MDC is playback continuity despite peers´ departures, fail-
ures, and churning. The algorithm for building the tree is very
simple, clusters must provide the upload capacity for a continu-
ous transmission; it does not pay attention to optimal transmis-
sion delays efficiency. This is the main problem of
TURINstream; a peer can be joined at any level of the network,
it just needs to follow a path along the control tree until it finds a
cluster that can host it (just based on the upload capacity).

Our scheme, is focused on improving the deficiencies of
the above algorithms by building a new hierarchical tree to-
pology that improves transmission efficiency in several ways:
it reduces upload bandwidth usage, peer communication
stress, and increases transmission robustness.

3 Proposed approach

Our underlying ground on proposing a new scalable scheme is
thatpeerscangreatlybenefit fromthecapacityofother requesting
peers via collaboration. Collaboration becomes a key factor for
efficient multicast applications over large-scale heterogeneous
environments. Based on these facts, we focus on developing a

726 Peer-to-Peer Netw. Appl. (2019) 12:724–739

collaborative computing system considering both the dynamic
behavior and scalability of the networks. To achieve this goal,
our proposed architecture is mainly constructed with a superpo-
sition of two overlapping networks, one using the tree model,
which is the main structure (the body of the architecture), and
the other using themeshmodel (Mutualcast [18]).

3.1 Tree distribution model

Mesh-based P2P multicast (such as Mutualcast) can achieve the
maximum overall throughput but incurs scalability limitations
because all nodes are fully connected. To deal with these limita-
tions, our proposed architecture uses clusters of peers allocated in
a unique tree-rooted distribution at the source node. The hierar-
chical structure of our approach is shown in Fig. 1. The first level
of the network hierarchy is the peer source (root node) that con-
tains the original file. Initially, active peers in the system are
grouped into small clusters (see section 3.2 for details), ensuring
thatpeersclosest to therootnode(sourcepeerS)will formtheroot
cluster in the distribution tree (cluster 1). Peers with longer time
proximitytothesourcepeeraregroupedas intermediateandleave
clusters in the hierarchical tree. Leaves (cluster 2–4) have the
longest time proximity to source peer. In this work, we consider
clusters with the same number n of peers, but it can be easily
extended to unequal clusters size (as a future work). In Fig. 1,
peers P1, P2 and P3 form the cluster with the highest hierarchy
level in themulticast session, while the rest of clusters and corre-
sponding peers are subordinates. That is, information is first dis-
tributed from the sourcenode to the root cluster, and from the root
cluster totherestofclustersfollowingasequential top-downorder
along the tree. Each peer forwards the blocks received from the
source to the rest of the peers within the same cluster, and simul-
taneously receives the restof theblocks fromtheotherpeers in the
cluster. Peers in the same cluster share bidirectional communica-
tion.Concurrently, eachpeer in the first cluster acts as a source for

anewcluster locatedon the second level of ourhierarchical struc-
ture. Thus, peer P1 is a forwarding peer of cluster 1 and a source
peer of cluster 2 (which is formed by peers P4, P5 and P6) at the
same time.PeersP2andP3canalsoextend theirownclusters.We
denote cluster 2 as a child-cluster of peer P1.

The communication between peers located in the first clus-
ter and the requesting peers clustering on a second level is
unidirectional. In other words, in the hierarchical approach,
the blocks are distributed from one cluster to another, in a
top-down fashion. Using clustering, the peers can greatly ben-
efit from the capacity of other neighboring requesting peers
via local collaboration while the number of connections is
reduced in comparison to a fully connected overlay topology.
The total number of connections TC (for a constant cluster
size) in our hierarchical scheme can be represented by:

TC ¼ k*
nð Þ n−1ð Þ

2

� �
þ l*n þ pð Þ p−1ð Þ

2

� �

internal external residual½ �connections

ð1Þ

where n = ⌊N/k⌋ represents the cluster size, N is the number of
peers in the system, k is the number of clusters, l is the number
of links in the tree (external node-to-node + source-to-root
connections), and remaining peers p = (Nmod k) are allocated
in a final p-size cluster. In a multicast group with N= 150
requesting peers, k = 30, n = 5, and l = N, our proposed archi-
tecture needs 1050 connections to distribute all the blocks. In
contrast, using a fully-connected architecture (e.g. Mutualcast
[18]), the overlay network is formed with (N − 1)(N − 2)/2 =
11026 connections. In this way, our proposed architecture is
scalable and robust at the same time. The overall delay opti-
mization problem for minimizing the content distribution time
is more complex than just considering the number of connec-
tions. It involves N, n, peers´ upload and download capacity,
and the final structure of the distribution tree. In the next and

Fig. 1 Scalable collaborative
multicast

Peer-to-Peer Netw. Appl. (2019) 12:724–739 727

experimental sections, we will address this problem in detail.
For the moment, we concentrate on a very important step in
our scheme, peer clustering.

3.2 Constraint clustering process

In this work, we use the Round-Trip Time (RTT) between two
peers as proximity information to build the local clusters.
Given a data set RTTi = {rtti, 1, rtti, 2,…, rtti, n}, i = 1, ⋯,
N, representing the Round-Trip-Time (RTT) from the ith peer
to all active peers in the system, our aim is to partition the
N(N-1) observations into k mutually exclusive clusters
S = {S1, S2,⋯, Sk} that minimize the sum of squares (within
the cluster) given by:

arg min
S

∑k
j¼1∑rttl;m∈S j

rttl;m−μ j

� �2
ð2Þ

where μj is the centroid of the cluster Sj, whose cardinality is
|Sj|. The solution of Eq.2 for a global minimum is an NP-Hard
problem, since there exist kN/k! different ways for grouping an
N(N-1) data set [19]. Instead, several heuristics have been
developed to provide local minimums or suboptimal solution
to this problem, the simplest and most widely known is the k-
means or Lloyd’s algorithm. Lloyd’s algorithm is based on the
simple observation that the optimal placement of a center is at
the centroid of the associated cluster. The algorithm proceeds
as follows [20]:

The k-means baseline algorithm has been modified to satisfy
the following constraints imposed in our hierarchical tree-base
model: a) the centroid of a cluster must always be a peer; b)
RTT values are nonsymmetrical; and c) the number of peers in
the clusters must be small and constant. The first constraint
avoids the use of fictitious peer centroids for which we cannot
measure RTT distances from/to any peer (because of the non-
linearity in the data). Amajor benefit of this constraint is faster
convergence time since the algorithm does not need to re-
compute the RTT values for each iteration as in the original
k-means. The second constraint (complements the first con-
straint) takes into consideration that RTT is not symmetric,
that is the distance from A to B is not necessarily the same
as the distance from B to A. Since RTT values are 1-D scalars
without intrinsic spatial distribution information, the way to
recalculate the new centroid position of cluster Sl in step 3 of
algorithm 1, is by finding the peer for which:

min ∑Sl
j¼1rtti; j

� �
;∀i; j∈Sl ð3Þ

as depicted in Fig. 2. Let us consider that all peers in Sl can be
spatially locatedas shown inFig. 2a (this isnotpossible in the real

world), and the distance frompeer i to all peer j’s can be schemat-
ically represented as shown in Fig. 2b. It is easy to see that the
minimum of Eq. 3 corresponds to peer i = 5, which becomes the
new centroid of the cluster. Figure 3 shows the final clustering
(one instance ofmany possible) of the k-means forN= 20 peers,
k = 4 clusters and n = 5. Figure 3a shows the initial peer distribu-
tion and Fig. 3b the corresponding clustering output.

The last constraint mentioned above (constraint c), is relat-
ed to Mutualcast mesh connection limits, which is approxi-
mately <15 nodes. There exist good solutions to this problem
in the literature (see [21]) with increased time and implemen-
tation complexity (requires the use of linear programming).
Instead, we developed a simple heuristic approach to satisfy
the cluster size constraint once k-means is applied (our scheme
takes advantage of the sub-optimal k-means output). It is
worth mentioning that more than finding an optimal partition
of peers, our main contribution is the hierarchical approach, in
which information is being transmitted in both ways, horizon-
tally and hierarchically vertical at the same time. Given the
output of algorithm-1 and cluster size |Sj| = n =N/k, j = 1,…k,
our size-constrained algorithm consists of the following steps
(If n =N/k is not integer, one of the cluster will have n + (N
mod k) peers):

Algorithm 1: k-means
1. Select k random centroids for the initial partition of the data space.
2. Assign each data point rtt to the cluster corresponding to the closest

centroid:
a. For each cluster centroid , compute the distance between

, , = 1, , ; = 1, , .

3. Calculate the new centroid of each cluster.
4. Repeat steps 2 and 3 until the algorithm converges (centroids do not

change anymore).

728 Peer-to-Peer Netw. Appl. (2019) 12:724–739

Generally speaking, algorithm-2 groups peers with mini-
mum distance to the centroid. The exception is the closest clus-
ter to source peer SP, for which it takes those peers closest to SP
without considering their distance to the centroid. Figure 4,
shows the output of algorithm-2 for N= 20, n = 5, and k = 4.

Clustering process is a centralized process (run by source
node or a dedicate server). However, we have also considered
its implementation in a distributed system where source node
(or a dedicated server) and cluster centroids participate in the

process. Arriving peers receive from source node (or dedicated
server) an ordered list of all cluster centroids they may join in;
peers select its closest cluster centroid and send a join-in re-
quest. If the cluster is full, it hands over its farthest peer (includ-
ing the new peer in the computation) to another cluster, and
receiving cluster repeats the peer insertion algorithm. When
cluster centroid changes after a peer insertion, parent and chil-
dren clusters are informed of the new changes (this is important
for the forwarding content and control parameters). This

Algorithm 2: Cluster size constraint

Input Data: k-means clustering (Algorithm-1)
Output Data: n-constrained peer clustering

1. Create a Cluster Distance Array CDA in ascending order using SP as a point
of reference (closest clusters to SP are on top of the array).

2. For each cluster Sj , j 1, . . . , k in CDA:
a) If Sj n, Sj is done and not considered for further peer exchange

process.
b) If Sj n and j 1, hand over the n Sj farthest peers Pm (with

respect to SP) to the closest cluster Si . Sj is done and not considered
member of CDA for further peer exchange process. Update the centroid
of and .

c) If > > 1, pick the closest peers to the centroid (it may

include peers from other surrounding clusters) such that , is
minimum, and hand over the − peers to the closest clusters,
such that (,), = 1, − ; is also a minimum.
d(X,Y) is the RTT distance from X to Y and are the peers staying in .

is done and not considered member of CDA for further peer exchange

process. Update the centroids of all modified clusters.
d) If < , take − peers from the closest cluster , such that the

distance is a minimum. is done and

not considered member of CDA for further peer exchange process.

.

.

.

1

2

5

9

2 3 4 5 7 6 8 9

3 41 5 7 6 8 9

7 846 32 9 1

68 7 5 4 32 1

8 67 9 5 4 32 1

.

.

.
1

2

7
5

9

4

6

8

3

New centroid

(a) (b)

Fig. 2 Locating the new centroid
from RTT measures. (a) Original
Cluster, and (b) Representation of
RTT distance from each peer i to
all peers

Peer-to-Peer Netw. Appl. (2019) 12:724–739 729

distributed algorithm is highly scalable (the number of compar-
isons is at the most half of the number of centroids) and dy-
namically adapts (for optimal delay) on every single peer
insertion.

3.3 N-ary tree creation

In our n-ary tree creation process, we favor (if possible)
shorter communication links between peers and clusters for
robustness, in particular for TCP connections. The tree is cre-
ated in a top-down fashion with two pre-inserted nodes: the
root of the tree or Root Cluster (RC), which is the one closest
to the source peer (SP), and the first left child of RC,
representing the closest cluster to RC. Hereafter, tree node
insertions depend on the relative distance to their closest node
and corresponding parent. Since higher hierarchical nodes
send data to children, the RTT values considered for the in-
sertion to the tree are from current nodes distance in the tree, to
prospect nodes (already computed for the clustering process
described in previous section). Let Sj be the next node to be
inserted in the tree coming from a predefined node list (LC)

ordered from closest to farthest distance with respect to RC, Si
be its closest node (already in the tree), and P the parent of Si.
If d(P, Sj) < [d(P, Si) + d(Si, Sj)]/K, then Sj becomes a child of P
(or sibling of Si) (if the number of children of P is less than n),
otherwise is inserted as child of Si. A special case during the
insertion of cluster Sj is when P is RC; RC could take more
than one child if RC has enough upload capacity. This is
useful for reducing transmission delay when two clusters are
close to RC but in opposite sides. Depending on the value of
the constant K, it favors the creation of more balanced trees
(K> 1), deeper trees (K< 1), or no influence at all in the final
tree organization (K= 1). The example in Fig. 5 shows the
following information: centroid distances of the clusters, clus-
ters´ ordered list LC, and S2, the next cluster to be processed
(Fig. 5a). Since d(RC, S2) = 5 < 7 = [(d(P, Si) = 3) + (d(Si, Sj) =
4)] for K= 1, S2 is linked to RC (parent of S1) creating at this
point a 2-level tree (root and two children). For K= 1.5, S2
becomes a child of S1, creating a 3-level tree, one node per
level. The last iteration produces the final 5-ary tree shown in
Fig. 5b and c for K= 1 and K= 1.5 respectively.

The tree creation algorithm is described as follows:

As part of the control topology, every peer manages a peer
list with the following information: peer follower, peer source,
and peer consumer. Followers are members of the same clus-
ter who alertly watch a predefined partner; in the case of fail,
the follower will take over its duties. Figure 6 shows an ex-
ample of the information or control list carried out by all peers.
Peers in the current cluster column watch for themselves, in
this case, 1 is the follower of 2, 2 of 3, 3 of 4, and 4 of 1; if peer
3 fails or leaves, peer 2 takes over its functions including

receiving from peer 6 (source) and forwarding to peer 5 (con-
sumer). Peer 2 now watch for peer 4 in current cluster. Peers
periodically sends keep-alive packets (acks every n packets) to
its clustermates. When a peer fails or leaves, the cluster cen-
troid initiates a peer request (in order to maintain the same
number of peers) to children clusters. After the handover, the
child cluster repeats the same action with its children until a
leaf is reached. If current cluster is a leaf, it will stay as is. All
peers maintain the last packet correctly received, so when

Algorithm 3: n-ary tree creation

Input Data: n-constraint k-means clustering (Algorithm-2)

Output Data: Content distribution tree

1. Get the closest distance cluster from SP, it becomes the Root Cluster

(RC).

2. Get an ordered distance list LC (closest to farthest) between RC and

the rest of clusters. The first cluster in the list becomes RC left child.

Clusters will be inserted in the tree following the order of LC.

3. Compute the distance from all nodes in the tree to , the next cluster

in the ordered list LC. Let (in the tree) be the closest node to .

a. If is a child (has a parent P), compute (,), (,),
, and make the following decision:
i. if (,) < [(,) + ,] ,⁄ and < ,

becomes a child of current parent (or sibling
of); otherwise becomes a child of .

4. Repeat step 3 until all nodes in LC have been inserted in the
tree.

730 Peer-to-Peer Netw. Appl. (2019) 12:724–739

resuming transmission because of a peer fail, the algorithm
ensures that all content will be received.

3.4 Intra-cluster and inter-cluster communication

Once the tree of clusters is created, the source node divides the
content (e.g. a file or media stream) into small blocks, to be
sent out to the highest hierarchical cluster or root cluster in the
tree. Within the root, every peer is designated as receiver from
the source node and as sender to the next and closest hierar-
chical level of clusters (as shown in Fig. 1). Every peer re-
ceives different blocks, which are concurrently redistributed to
all peers within the cluster (intra-cluster communication) and
at the same time to the next level of clusters down the tree
hierarchy (inter-cluster communication). The same process is
performed by lower cluster levels until source content reaches
all peers in the leave clusters.

Similar toMutualcast [18], an optimal bandwidth allocation
strategy is implemented using redistribution queues between
the source and requesting peers. In each cluster, a fully con-
nected topology is built considering proximity information.
Within each cluster, content is distributed among all partici-
pating peers, which are also called requesting peers. Peers are
in fact receivers (Re) and senders (Se) at the same time. Each

source splits the original content into small blocks and one
unique peer is selected to distribute a block to the rest of the
peers. Each requesting peer forwards the blocks directly re-
ceived from a source to the rest of the participating peers in its
own cluster. Peers with different upload capacity distribute a
different amount of content.When the source peers have abun-
dant upload resources, each source additionally sends one
block directly to the receiving peers. Source sends one block
to each participating peer for redistribution, one block in par-
allel to all requesting peers. Each requesting peer forwards the
blocks received from the sources to the other requesting peers.
After this, each peer works as a source for its own cluster. Each
cluster is formed by the source S of upload capacity BS and N1

requesting peers Ri with an average upload capacity CR. Each
source S distributes its contents in two different routes: (1)
through the content-requesting peers and (2) directly from
the source. The route 2 is chosen only when the source still
has upload capacity after exhausting routes 1. Thus, the distri-
bution throughput Θ, which represents the amount of content
sent to the requesting peers per second is defined as

θ ¼
Bs; Bs≤BR

BR þ BS−BR

N 1
; BS ≤BR

(
ð4Þ

where

BR ¼ N 1

N1−1
CR ð5Þ

4 Implementation

This work adds scalability to the collaborative architecture
presented in [11] and compares its performance with other
similar architectures in the literature. To reach this objective
we make use of a scalable P2P simulator called PeerSim [22].
This simulator is an extremely scalable simulation environ-
ment that supports dynamic scenarios such as churn and other
failure models [22]. PeerSim has been written in JavaFig. 4 Cluster size constraint

Fig. 3 (a) Original peer
distribution, (b) k-means output
(centroids are marked in red and
SP is the Source Peer)

Peer-to-Peer Netw. Appl. (2019) 12:724–739 731

programming language, and the simulator classes can be ex-
tended to implement new peer-to-peer protocols. PeerSim
consists of two simulation engines: cycle-based and event-
driven. In cycle-based mode, authors claim simulation may
reach 106 nodes. The engines are backed by many flexible
components with a configuration mechanism, which can be
fully configured and customized. The event-based engine is
less efficient in terms of computing resources, but more real-
istic in its approach.

The PeerSim simulator is based on several components,
which can be divided into protocols, nodes and controls. In

order to improve the work environment, we use the Eclipse
IDE due to its portability. To implement our collaborative
architecture in PeerSim, we have developed a protocol called
Hybrid Kademlia Protocol, which is a substrate between the
application layer and the transport layer. Some classes from
the Kademlia module [23] are taken as references and adapted
in order to implement our protocol. Adapted modules of
Kademlia protocol in Peersim are shown in Fig. 7.

The simulation module is customizable through a simple
context using configuration files. These allow us to manipu-
late the parameters of all networks in order to establish the

Fig. 6 An example of the control
list carried out by all peers

(a) (b)

(c)

Fig. 5 Cluster size constraint. 5-
ary tree creation process. (a)
Initial conditions; (b) final tree for
K = 1; and (c) final tree for K =
1.5

732 Peer-to-Peer Netw. Appl. (2019) 12:724–739

various controls. Some of the parameters are BITS, which
specifies the length of the ID, K, which is the number of calls
to all replication system parameters, and ALPHA, which is the
number of simultaneous search actions allowed by the proto-
col. The configuration file can invoke the command line to
file. TXT, or can do so using the Eclipse IDE. The control
protocol is very important because it allows us to simulate
the dynamism and real scenarios of the nodes. These controls
allow us to manipulate the traffic and the turbulence in the
network, along with other events. Each control module allows
for the identification of the peers who are outside the network
or of the waiting time required for the distribution of content.
Many of these controls have been pre-designed for the simu-
lator. During the implementation of our architecture, a class
known as Cluster class was created, which generates the group
of nodes, distributes the content, and identifies the peer with
its corresponding fragments. This class also allows for the
manipulations of nodes within the hierarchical structure of
our collaborative architecture.

Message routing plays an important role in our protocol, be-
causewhenamessagearrivesatanode, thenodecandecidewhich
route to use to send themessage (a newnode or the nearest node).
Otherclassescreatedinourprotocolareusedtosimulatethenode’s
dynamicity, fragmentation of the content and the packet loss.

5 Results and discussions

We evaluate the scalability, intrinsic robustness, and cluster size
of our proposed architecture based on the content distribution
time to all peers using real and simulated experiments. Our first
experiment, compares the performance of Mutualcast and the
hierarchical collaborative multicast scheme using a small proto-
type over the PlanetLab Network [24]. Due to limitations of real
experiments regarding the number of participant peers, we ad-
ditionally simulated and evaluated the performance of our archi-
tecture in a second experiment using 500 and 1000 peers. Our
third and final experiment, compares our architecture against

PlanetLab nodes:
Source peer (SP):
SP – University of Pi�sburgh (planetlab2.cs.pi�.edu)
Reques�ng peers:
R1 – Worcester Polytechnic Ins�tute (WPI): (75-130-96-13.sta�c.oxfr.ma.charter.com)
R2 – University of Chicago (planetlab3.cs.uchicago.edu)
R3 – Massachussets Ins�tute of Technology (planetlab7.csail.mit.edu)
R4 – University of Toronto (pl2.csl.utoronto.ca)
R5 – LIP6 – Université Pierre et Marie Curie (planetlab-01.lip6.fr)
R6 – University College London – UCL (planetlab1.net.research.org.uk)
R7 – Wroclaw University of Technology (planetlab1.ci.pwr.wroc.pl)
R8 – TP-RD-Warsaw (planetlab1.warsaw.rd.tp.pl)
R9 – Warsaw University of Technology (planetlab3.mini.pw.edu.pl)

Fig. 8 PlanetLab experimental
set-up and content distribution
tree

Fig. 7 Adapted modules of
Kademlia protocol in PeerSim

Peer-to-Peer Netw. Appl. (2019) 12:724–739 733

two well-known P2P technologies in the literature, Super-Peer
and Kademlia. In the experiments, 1.5 Mb and 5 MB files were
distributed among all requesting peers.

5.1 Scalability: Hierarchical tree vs Mutualcast

A limitation ofMutulcast is related to its scalability. Although,
part of our proposed architecture is inspired in Mutualcast,
scalability is considerably improved by using clusters of peers

organized into a unique distribution tree, that improves (in the
average) the content distribution time. Scalability between our
scheme andMutualcast is compared in terms of delivery delay
[24]. For this, a broadcast group of 10-peer PlanetLab [25]
topology was created as depicted in Fig. 8. The SP is located
at the University of Pittsburg, while requesting peers were
spread out in the following academic centers: University
College London (UCL), Worcester Polytechnic Institute
(WPI), LIP6 (UPMC), MIT, University of Toronto,

Ti
m

e
(m

ill
ise

co
nd

s)

Number of nodes

Fig. 10 PeerSim Propagation of a message in our collaborative architecture

0

5

10

15

20

25

30

35
Mutualcast Hierarchical

Average Delay (segs):
- Mutualcast = 24.64

- Hierarchical = 13.77

U
C

h
i
c
a
g

o

U
T
o

r
o

n
t
o

M
I
T

U
C

L

W
r
o

c
l
a
w

-
U

T

W
a
r
s
a
w

-
U

T

T
P

-
R

D
-
W

a
r
s
a
w

W
P

I

L
I
P

6

M
ax

im
u

m
 D

el
ay

 (
se

cs
)

Fig. 9 Maximum delay
comparison between Mutualcast
and Hierarchical Collaborative
[24]

734 Peer-to-Peer Netw. Appl. (2019) 12:724–739

University of Chicago, Warsaw-UT, Wroclaw-UT, and TP-
RD-Warsaw. The resulting hierarchical tree after applying al-
gorithm 1–3 (see section 3) is unary. That is, SP sends the
blocks of content to closest peers R2, R3, and R4 in RC; RC
forwards the receiving blocks to cluster S1 (R1, R5, and R6)
through R2 (the closest peer to S1 centroid), and finally, S1
forwards to S2 (R7, R8, and R9) through R5 (the closest peer to
S2 centroid). During the clustering process, WPI peer was
assigned to cluster S1 because of its PlanetLab connectivity

was too slow despite the fact that spatially speaking it is closer
to SP. Similarly, the connectivity of all nodes in Poland were
also too slow, reason for which they were grouped by our
clustering algorithm as the last cluster (S2).

Our Hierarchical Collaborative Topology (in Fig. 8) and
Mutualcast were compared in terms of content delivery delay,
in which thirty independent experiments were conducted over
different days and times. The time delay in receiving the com-
plete file content (of size 1.5 MB) at each peer was recorded,

Ti
m

e
(m

ill
ise

co
nd

s)
Ti

m
e

(m
ill

ise
co

nd
s)

(a)

(b)

Number of Clusters

Number of Clusters

10 20 30 40 50 60 70 80

Fig. 11 Delivery delay. a) cluster size = 3 and b) cluster size = 12

Peer-to-Peer Netw. Appl. (2019) 12:724–739 735

and the scheme with smallest average delivery delay is as-
sumed to present the best overall performance, as depicted
in Fig. 9. When our approach is used, the average peer deliv-
ery delay is reduced by around 56% with respect to
Mutualcast. This improvement is attributed to the fact that
the source is close to the cluster at the highest level of the
hierarchy. Thus, the throughput between the source and this
subset of requesting peers is larger than the throughput be-
tween the source and the rest of the requesting peers (peers
with slow connectivity are sent far down in the hierarchal tree
to avoid affecting the overall content delivery delay per peer).
The second fact is that using a hierarchical approach, the peers
in the local clusters avoid the connection to distant peers into
the overlay topology as in Mutualcast, wherein all requesting
peers are fully connected. Slow peers in fully connected to-
pologies (due to traffic, slow bandwidth, etc.), increase the
average content delivery delay per peer (system is as fast as
its slowest ink), as in the case of Poland, where all peers had
bad connectivity.

In order to test the scalability of our scheme at higher
levels with hundreds of peers, we simulated (see section
4 for details) the propagation delay of a 5 Mb file to all
nodes in the n-ary tree network. The experimental set up

consisted of N = 1000 peers, k = 333 clusters, cluster size
n = 3 yielding a 10-level binary tree after applying algo-
rithms 1–3 in section 3 (Mutualcast cannot handle this
number of peers). Figure 10 shows results for this exper-
iment, in which the first (1) and last peer (1000) in the
horizontal axis are the closest and farthest to SP respec-
tively. Our measurements of time (in milliseconds) were
taken from the construction of the message until the re-
construction of the content and its defragmentation to
generate a new hierarchical cluster level. Requests from
peers building the cluster were intermediate operations in
the protocol. Results show that the time spread of the
content into the clusters increased consistently; as the
tree architecture becomes deeper (increasing number of
levels), intermediate and end peers require more time to
regroup the total content of the transmitted media. The
first five hundred peers receive the full content of the file
more quickly than the rest of the peers, as expected.
However, for this simulation the difference is not signif-
icant, while the first node received the complete content
in 694 ms, the last node received it in 720 ms (all peers
in the simulation are considered to have good connectiv-
ity and small RTTs).

Fig. 12 Delivery delay comparison of Kademlia, Super-Peer and our Hierarchical (scalable) collaborative architecture. (a) cluster size = 8; (b) cluster
size = 8; and (c) cluster size = 12

736 Peer-to-Peer Netw. Appl. (2019) 12:724–739

5.2 Cluster size impact

In this section, the impact of the size of the clusters during
content distribution is evaluated using clusters of size 3 and 12
to distribute the content to 1000 peers, as shown in Fig. 11.
These results represent the average measurements of ten sim-
ulations done with our proposed architecture. A collaborative
architecture with clusters of size 3 requires a n-ary tree with
333 clusters to distribute the complete content to all peers,
while an architecture with cluster of size 12 requires a n-ary
tree with 42 clusters. Cluster with 3 peers commonly generates
a deeper tree than cluster with 12 peers, causing a longer delay
in distributing the full content to all nodes. In this case, the first
peer received its complete content in 666 ms, while the max-
imum delay in which the last peer received its complete con-
tent was 686 ms. Clusters with size 12 had a better delivery
time than the size 3 cluster; the first peer received its entire
content in 634 ms, while the maximum delay to receive the
complete content for all peers was 642 ms.

The results from our simulations show that the size of
the cluster plays an important role in our architecture, be-
cause it introduces benefits in two important ways. The
first benefit is derived from the facts that having a larger
cluster means that there is a greater robustness and fault
tolerance in the group. The second benefit is that the archi-
tecture gains scalability, which means that most of the
requesting peers obtain the content more quickly. Traffic
and turbulence factors allow us to generate a more realistic
simulation of the network behavior. If a node loses com-
munication with other nodes, it does not interfere with the
reunification of the content because there are more nodes
in the cluster that would provide support. For smaller clus-
ters, a loss of content is more likely and peers have to
retrieve the contents from a higher level of the distribution
tree, which introduces a bigger delay. Architectures with
small cluster (e.g. with 3 peers) are not robust because the
clusters are very small, and if a peer left the cluster, it
would be inoperative. Also, this type of architecture gen-
erates many small clusters, and the distribution tree re-
quires many levels to organize all these clusters.

5.3 Comparison with other technologies

Finally, we compared the performance of our collabora-
tive infrastructure with Super-Peer [12] and Kademlia
[13]. We selected these protocols because of their similar-
ities to our architecture proposed in this paper. Our simu-
lation used a network with 500 nodes to evaluate these
three architectures. In our first test, our collaborative ar-
chitecture was constructed using a size 8 cluster. Figure
12a shows these results. In this case, we can see that
Kademlia presents the highest distribution delay, while
Super-Peer has the lowest distribution delay. The

distribution delay of our architecture is between that of
Kademlia and Super-Peer. Our second test considers a
size 10 cluster in the collaborative architecture. The re-
sults from this experiment are shown in Fig. 12b. We can
see how Kademlia continues with the same behavior, be-
cause its delivery times are high. However, delivery delay
in our collaborative architecture is now very similar to the
delivery delay in the Super-Peer architecture. In our last
test, the cluster size in our collaborative architecture is
increased to 12 peers as shown in Fig. 12c. In this case,
our scalable collaborative architecture presents better per-
formance than Kademlia and Super-Peer in terms of de-
livery delay, mainly in the farthest nodes (node 250 to
node 500). Our results demonstrate that cluster size has
an important impact on our scalable collaborative archi-
tecture, the bigger the cluster size the better the overall
delivery delay. Since internally our clusters work as in
Mutualcast, the cluster size is restricted to at the most
15 peers.

6 Conclusions and future work

In this work, we have developed a new hierarchical and
scalable P2P architecture for fast and robust content dis-
tribution from a source to multiple nodes. In our architec-
ture, we use time-proximity for grouping peers into clus-
ters and clusters into a hierarchical interconnected n-ary
tree in which, content is distributed concurrently within
clusters (horizontal distribution) and among clusters in a
top-bottom direction (vertical distribution). In the first
place, we concentrated on evaluating critical issues in de-
lay sensitive scalable computing systems, such as scal-
ability (as a number of receiving peers and cluster size),
robustness and delivery delay in our architecture. We
found that our scheme performance (scalability and ro-
bustness) is proportional to cluster size. That is, as the
number of receiving peers in a cluster increases the better
the content distribution time and robustness of the system.
In the second place, we compare our scheme against pop-
ular distribution schemes in the literature such as
Kademlia and Super-Peer. Results show that our scheme
provides a lower delivery time and better scalability,
maintaining a reduced number of connections. As a future
work, we are working on replacing Mutualcast content
delivery in our clusters by an efficient optimized multicast
scheme supporting a greater number of peers per cluster,
capable of more demanding data content delivery such as
video streaming.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

Peer-to-Peer Netw. Appl. (2019) 12:724–739 737

References

1. Research Nester. Enterprise Video Conferencing Market: Global
Demand Analysis Opportunity Outlook 2023. URL: http://www.
researchnester.com/reports/enterprisevideo-conferencing-market-
global-demand-analysis-opportunity-outlook-2023/164 (accessed
on 01/05/2017)

2. Zion B. (2017) Market Research. IPTVMarket for Advertising and
Marketing, Media and Entertainment, Gaming, E-Commerce,
Healthcare and Medical, Telecommunication It and Others -
Global Industry Perspective, Comprehensive Analysis, and
Forecast, 2015 2021. URL: https://www.zionmarketresearch.com/.
Consulted May 1

3. Deering SE (1988) Multicast Routing in Internetwork and
Extended LANs. In: Proc. of the ACM SIGCOMM, pp. 55–64,
Stanford, CA, USA

4. Zhang B, Wang W, Jamin S, Massey D, Zhang L (2006)
Universal IP Multicast Delivery, In: Computer Networks,
Volume 50, 781–806

5. Gau V, Wu P-J, Wang Y-H, Hwang J-N (2002) Chapter1: Peer-to-
Peer Streaming Systems. In: Ubiquitous Multimedia Computing
edited by Q. Li, T. K. Shih. CRC Press

6. Chu Y, Rao SG, Seshan S, Zhang H (2002) A Case for End System
Multicast. In: IEEE Journal on Selected Areas in Communications,
Volume 20, Num. 8, pp. 1456–1471

7. Milojicic DS, Kalogeraki V, Lukose R, Nagaraja K, Pruyne J,
Richard B, Rollins S, Xu Z. (2003) Peer-to-peer computing.
In: Technical Report HPL-2002-57R1, HP Laboratories, Palo
Alto, USA

8. Jannotti J, Gifford DK, Johnson KL, KaashoekMF, Otoole Jr. J. W.
(2000) Overcast: reliable multicasting with an overlay network. In:
Proc. of the OSDI00, pp. 197–212, San Diego, CA, USA

9. Banerjee B, Bhattacharjee B, Kommareddy C (2002) Scalable
Application Layer Multicast. In: Proc. of ACM SIGCOMM, pp.
205–217, Pittsburgh, PA, USA

10. Castro M, Druschel P, Kermarrec A-M, Rowstron A (2002)
SCRIBE: A large-scale and decentralized application-level
multicast infrastructure. In: IEEE Journal on Selected Areas in
Communications,Volume 20, Num. 8, 1489–1499

11. López-Fuentes FA, Steinbach E (2007) Hierarchical Collaborative
Multicast. In: Proc. of the 15th ACM Int. Conf. on Multimedia, pp.
763–766, Augsburg, Germany

12. Yang B, Garcia-Molina H. Designing a super-peer network. In:
Technical Report, Stanford University. Available online: http://
ilpubs.stanford.edu:8090/594/1/2003-33.pdf (accessed on 07/
05/2017)

13. Maymounkov P, Mazieres D (2002) Kademlia: A Peer-to-peer
Information System based on the xor Metric. In: Proc. of the Int.
Workshop on Peer-to-Peer Systems, Cambridge, MA, USA

14. Wang F, Xiong Y, Liu J (2007) mTreebone: A Hybrid Tree/Mesh
Overlay for Application-Layer Live Video Multicast. In: Proc. of
the 27th Int. Conf. on Distributed Computing System, Toronto,
Ontario, Canada, pp. 49–56

15. Magharei N, Rejaie R (2006) Understanding Mesh based Peer-to-
Peer Streaming. In: Proc. of the 16th International Workshop on
Network and Operating Systems Support for Digital Audio and
Video, Newport, RI, USA

16. Tran DA, Hua K, Do T. ZIGZAG: An Efficient Peer-to-Peer
Scheme for Media Streaming. In: IEEE INFOCOM, Mar. 2003,
pp. 1283–1292 25

17. Magnetto A, Gaeta R, Grangetto M, Sereno M (2010)
TURINstream: A Totally pUsh, Robust, and effIcieNt P2P Video
StreamingArchitecture. In: IEEE Transactions onMultimedia, vol.
12, no. 8, pp. 901–914

18. Li J, Chou PA, Zhang C (2005) Mutualcast: An Efficient
Mechanism for One-To-Many Content Distribution. In: Proc. of
the ACM SIGCOMM ASIAWorkshop, Beijing, China

19. Celebi ME, Kingravi HA, Vela PA (2013) A Comparative
Study of Efficient Initialization Methods for the K-Means
Clustering Algorithm. In: Expert Systems with Applications,
40(1): 200210

20. Hamerly G, Elkan C (2013) Learning the K in K-means: in:
proc. Of the 7th annual conference on neural information pro-
cessing systems

21. Zhu S, Wang D, Li T (2010) Data clustering with size constraints.
In: Knowledge-Based Systems 23(8), 883889

22. Montresor A, Jelasity M (2009) Peersim: A scalable P2P simulator.
In: Proc. of the Int. Conf. on Peerto-Peer Computing, pp. 99–100,
Seattle, WA

23. Bonani M, Furlan DA (2010) Kademlia Module for PeerSim. In:
Technical Report, University of Trento

24. López-Fuentes FA (2009) Videomulticast in peer-to-peer networks.
138 pp, Verlag Dr. Hut, Munich

25. Peterson L, Roscoe T (2006) The Design Principles of PlanetLab.
In: Operating Systems Review (OSR), Volume 40, Num. 1, 1116

Rogelio Hasimoto-Beltran is a
researcher in Computer Sciences
at the Center for Research in
M a t h em a t i c s - C IMAT i n
Guanajuato, México. He received
his B.S. in Oceanology (with
honors) from the University of
Baja California, Mexico, in 1985
and his M.S. in Computer Science
from the Center for Scientific
Research and Higher Education
at Ensenada (CISESE), Mexico
in 1990. He received the Ph.D.
d e g r e e i n Compu t e r a n d
Electrical Engineering from the

University of Delaware, USA in 2001. After his Ph.D., he spent two years
at Akamai Technologies (a leader enterprise in Multimedia Content de-
livery) as a Senior Software Engineer. In February of 2003, Dr. Hasimoto
joined the Department of Computer Sciences where he was tenure asso-
ciate researcher and promoted to Full-Time researcher position. He has
been visiting associate professor at the University of Illinois at Chicago
(UIC) during 2009–2010. Dr. Hasimoto has published over 40 technical
papers in refereed conferences and journals in the area of image process-
ing, computer vision, and multimedia networks. His current research
interest includes Robust Multimedia Communication, Error
Concealment, Face Detection and Recognition, and Chaotic Encryption.
E-mail: hasimoto@cimat.mx. Address: Jalisco S/N, Col. Valenciana,
Guanajuato, Gto, México. 36,023

738 Peer-to-Peer Netw. Appl. (2019) 12:724–739

http://www.researchnester.com/reports/enterprisevideo-conferencing-market-global-demand-analysis-opportunity-outlook-2023/164
http://www.researchnester.com/reports/enterprisevideo-conferencing-market-global-demand-analysis-opportunity-outlook-2023/164
http://www.researchnester.com/reports/enterprisevideo-conferencing-market-global-demand-analysis-opportunity-outlook-2023/164
https://www.zionmarketresearch.com/
http://ilpubs.stanford.edu:8090/594/1/2003-33.pdf
http://ilpubs.stanford.edu:8090/594/1/2003-33.pdf

Francisco de Asís Lopez-
Fuentes received the B.Sc. de-
gree in electrical engineering
f r om Oaxaca In s t i t u t e o f
Technology, Oaxaca, México, in
1988. He received the M.Sc. de-
gree in Computer Science
minoring in Networking from
M o n t e r r e y I n s t i t u t e o f
Technology (ITESM), Atizapán,
México, in 1998. From 2003 to
2008 he was a member of the re-
search s t a ff of the Media
Techno logy Group in the
Institute for Communication

Networks at the Technische Universität München (TUM), Munich,
Germany, where he received the Engineering Doctorate in 2009. In
December 2008, Dr. Lopez-Fuentes joined the Department of
Information Technology of Universidad Autónoma Metropolitana-
Cuajimalpa, México City, México, where is currently an associated
professor-researcher for Networks and Distributed Systems. From 1996
to 2003, he was a professor-researcher in the Institute of Electronic and
Computer Science at the Technological University of Mixteca,
Huajuapan, México. From 1988 to 1994, he was a design engineer in
the Engineering and Software Development Department at Siemens,
México. His current research interests are in the area of networked and
interactive multimedia systems, peer-to-peer networks, distributed sys-
tems as well as network security. E-mail: flopez@correo.cua.uam.mx.
Address: Av. Vasco de Quiroga 4871, Col. Santa Fe Cuajimalpa,
Delegación Cuajimalpa de Morelos, Ciudad de México, C.P. 05348.

Misael Antonio Vera-Lopez re-
ceived the B.Sc. degree in infor-
mation systems and technology
from Universidad Autónoma
Metropolitana-Cuajimalpa in
2015. During his B.Sc. studies
he worked on simulation for
peer-to-peer networks and video
distribution.

Peer-to-Peer Netw. Appl. (2019) 12:724–739 739

Dynamic Network Coding for Collaborative Multi-
source System

Francisco de Asís López-Fuentes and Javier Mendoza-Almanza
 Department of Information Technology
 Universidad Autónoma Metropolitana Cuajimalpa (UAM-C)

México City, México
flopez@correo.cua.uam.mx, javier-lvr09@hotmail.com

Abstract— Network coding is a promising technique in the
field of Information Theory used to improve performance of
communication networks. Several benefits related to energy
savings or increase throughput have been reported in different
areas when network coding is used. This paper presents a
dynamic network coding approach for a collaborative multi-
source system. Peer-to-peer paradigm is used to build our
collaborative network between nodes in a dynamic way. Peers
are synchronized by a coordinator server, which is responsible
for assigning dynamic roles to the nodes that are inside the
system during the network coding process. Coordinator server
also must ensure that the network coding process is completed.
Likewise, multiple sources are created to synchronize the nodes
in terms of the contents shared by them.

Keywords— network coding, peer-to-peer networks,
collaboration systems, multi-source, distributed systems,
information theory

I. INTRODUCTION

Currently, multimedia content are generated from different
means such as social networks, mobile devices, etc.
Nevertheless, multimedia contents consumes a large amount of
resources in the system infrastructure. Under this scenario
collaboration between nodes in order to build more robust
network infrastructures is required. However, most of current
infrastructures are centralized and collaboration between nodes
is limited. Peer-to-peer (P2P) paradigm has emerged as a
promising solution to improve the collaboration between
nodes. A P2P network is deployed over a physical network as
an overlay network. We are not need to change the physical
connections in our network because the links in a P2P
networks are logical connections established via TCP or HTTP.
On the other hand, traditional collaboration between nodes has
been mainly for sharing files, but the current multimedia
contents often are large (e.g. movies) and these require large
storage spaces. To deal with this problem, content can be
fragmented into several pieces and these pieces can be located
in different nodes or peers. Thus, large multimedia contents
can be recovered from multiple sources. In such a way that
multi-source schemes help to alleviate the unpredictability
congestion in the Internet, because different parts of a big
digital content can be recovered from different sources and

communication links instead of a single source and one
communication links. Also the problem of the single point of
failure can be avoided. Multi-source schemes are taking
relevance and several multi-source models have been proposed
as an alternative to provide smooth video delivery [1], [2]. This
paper introduces a dynamic network coding concept for video
transmission from multiple sources to multiple sink under a
cooperative environment. Our work exploits the benefits
introduced by the P2P networks, such as load balancing and
distribution of duties between all participating peers. We also
exploit that a peer has characteristic to be a server and a client
at same time in order to try to implement a balanced network
coding between all participating peer. Thus, cooperation
between nodes is not limited to their storage capacities, but that
this cooperation is extended to their processing and uploading
capacities. To offer video quality a system typically requires to
have a high throughput and low latency in order to transmit
video with high data rate. Network coding can help to reach
this objective. In a network using network coding, the
intermediate nodes encode the received packets from the
source and forward these encoded packets to the end nodes [7,
8, 9]. However, the assignment of the nodes that perform the
coding is static. In other works, each node in the network
coding scheme always has a unique and static role during all
network coding processes. In this work, we propose a dynamic
coding scheme; in such a way that network coding can be done
by all the participating nodes in the content distribution system.
To evaluate our dynamic network coding approach we have
implemented a prototype in Linux where the communications
between all nodes are established via TCP (Transmission
Control Protocol). Results obtained from our dynamic network
coding show best benefits respect to results obtained from
traditional network coding. We evaluated both approaches
using network coding based on XOR operation.

The rest of this paper is organized as follows. Section II
introduces basic concepts about network coding. Then, we
describe some research works about network coding in Section
III. In Section IV we give a description about our network
coding model, and its implementation over a P2P network. We
describe static and dynamic approaches. The performance of
our model is evaluated in Section V. Conclusions and future
work are given in Section VI.

378978-1-5386-7266-2/18/$31.00 ©2018 IEEE

II. NETWORK CODING CONCEPT

Network coding is a technique proposed by Ahlswede at al
[3] to improve the information rate of a network
communication. Network coding does coding at the
intermediate nodes in order to increase the flow of packets
considering the limit capacity of the links. Let’s to consider the
butterfly network shown in figure 1 to explain basic concept of
network coding. There are a source node and two receiver
nodes. In figure 1a we can see that the capacity of each edge is
1, which means that each links can transmit one data unit per
unit time only. Figure 1b shows a source S sending two bits b1
and b2 to receiver nodes R1 and R2 simultaneously. Both
receivers R1 and R2 must receive both bits b1 and b2. Node 1
broadcast bit b1 to node 3 and receiver R1, while node 2
broadcast bit b2 to node 3 and receiver R2. We can see that
intermediate node 3 only receive and forward the bits received
from nodes 1 and 2. In this case, link between node 3 and node
4 needs two time units to transmit bit b1 and b2 to node 4.
Finally, figure 1c shows implementation of network coding in
intermediate node 3. Here, network coding is denoted by the
operator ⊕ (XOR). Link between node 1 and receiver R1
transmits bit b1, while link between node 2 and receiver R2
transmits bit b2. In this case, receive R1 can recover bits b1
and b2, but b2 must be retrieved from b1⊕b2 using bit b1
previously received from node 1. Also, R2 can recover b1 and
b2, but in this case b1 must be retrieved from b1⊕b2 using bit
b2 previously received from node 2. We can see how multicast
rate is increased from a 1 bit/time unit to 2 bits/time unit by
using network coding.

III. RELATED WORK

Several applications related with communication networks
using network coding are reported in the literatura. Network
coding have been implemented in networks, wireless networks
[18, 19], MANETs, ad-hoc networks, sensor networks [6],
wireless mesh networks [10], and quantum networks [20, 21].
In most of these cases, network coding provides different
benefits in the communication networks such as reliable
broadcasting, efficient data dissemination, saving bandwidth,
improved system throughput, reduced delays and and recovery
data. Different research works about network coding are
reported in the communication network literature. Some active
research areas of network coding are sensor networks [11],
security issues [17], video streaming and content distribution
[8]. A scheme for large scale content distribution using
network is presented by Gkantsidis et al in [8]. Authors report
that network coding helps to increase the throughput in a
system between 20% and 30% in comparison with a system
where coding is done in the source. Network coding provides
robustness to a system in extreme situations such as departure
of nodes or sudden server. Also, systems using network coding
have a better performance than using unencoded blocks or
erasure codes. Sundararajan et al. [9] focus network coding
techniques on wireless networks. In this case, authors evaluate
the impact of network coding on the TCP/IP (Transmission
Control Protocol/Internet Protocol). To this end, they introduce
a new layer between the transport layer (TCP) and network
layer (IP), but without modifying the congestion control
mechanism. Their results show that TCP with network coding
allows that a wireless network slight increases its throughput
and have greater robustness in a packet loss situation. A work
about network coding focused toward sensor networks is
SenseCode [11]. This work address network coding to solve
problem related to reliability and transmission energy in a
sensor networks. SenseCode is evaluated in term of its
reliability and transmission energy and the obtained
measurements are compared with the results obtained using
CTP (Collection Tree Protocol) [12] on the TOSSIM platform
[13]. Results show that using network coding sensor network
can reach a balance between energy efficiency and reliability.
Security also is a field where network coding has been a
positive impact. For example, Lima et al. [14] use network
coding to design a secure architecture for video transmission
over wireless network in scenarios with losses. Network
simulator NS-2 is used to evaluate this architecture. Authors
reports several benefits by using network coding in packet
encryption such as smaller packets than those obtained by the
traditional method, and less packet loss. Where less packet loss
means to have a better video quality. A work about network
coding addressed to video streaming system is presented by
Nguyen et al. in [16]. In this case, network coding is studied in
video broadcasting application for wireless network, and the
author are interested in developing an optimal scheme for
retransmission of lost packet using erasure codes with network
coding. Other authors have found that using network coding in
content distribution systems it is possible to achieve optimal
multicast rate [3]. Inspired in these previously works, in this
paper, we try to extend the network coding concept based on
XOR operation from a static approach to a dynamic approach
for multi-source systems.

Figure 1. Example of a communication network. a) Capacity of
the edges, b) Traditional approach and c) approach with network
coding

379

IV. PROPOSED MODEL

Our model uses different nodes, which are peers and
servers. Servers store information about the peers and files
shared by them. Due to this fact the servers are also called
source nodes. Our proposed model with multiple sources is
shown in figure 2. Each source distributes its initial content to
different requesting peers, and sources are independent of each
other. Each source distributes a type of file. Thus, video,
music, photos and PDF files are distributed from sources S1,
S2, S3 and S4, respectively. Network coding is implemented in
this multi-source scheme in order to improve the distribution
time. Each server must respond all received requests. Inside the
server there is a matrix which stores the IP address of all nodes
and the files shared by them. When a server receives a request,
it creates a thread to responds this request. For each request a
thread is created to respond all requests at the same time (in a
concurrent way). This thread establishes a communication with
the peer that wants to share files or synchronize its
communication with the server.

In our architecture, a peer establishes communication with
different sources and different peers in order to share content
and to have information about the contents that are shared
within the network. Each peer has different matrices with
information about the peers that are connected and the files
shared by them. For each source the peer has a different matrix.
In these matrices the information is organized using the IP
address of the peer and the names of the contents to be shared.
When a peer wants a new content from another peer these
matrices must be synchronized with the different sources. To
request a file, a peer creates different threads to synchronize
their matrices and to update information only of the peers that
are connected and the files shared by them. Once the matrices
are updated, the peer establishes communication with peer
where wished file is available, and create a thread which
establishes communication with that peer to receive the wished
files. A peer can create different threads to request a content to
any the different peers within the network and likewise can
distribute content to all peers that request a file from it. In [4] is
presented a detailed explanation about the multi-source scheme
used in our experiments.

A. Static network coding
Our multi-source architecture is enabled to run network

coding. To do that, a peer has to involve other peers within the
network and use different threads with specific tasks. Thus,
peers can be organized as is shown in figure 3. In this scheme,
we have used a traditional network coding approach, which in
this work we have called static network coding. This means
that each peer in the architecture has only a specific task to do
during all network coding process. Figure 3 shows this
scenario. Here, peer P1 receives video1 from S1 and video2
from S2. After this, peer P1 creates an encoded file based on
the two received files. To this end, peer reads bit by bit from
both files and applies the XOR operation for each bit that reads
from both files, and the result is saved in the encoded file. Sink
peers P3 and P4 receive the encoded file and create a thread to
one of the source peers to request the original file. P3 requests
the video2 from peer S2 and P4 requests video1 from S1.
Therefore, one peer will have the encoded file and one of the

original files while the other peer will have the encoded file
and another original file. After this, peers P3 and P4 open both
files bit by bit and create a new file which will contain the
original file. For each bit that is read from both files, the peers
apply the XOR operation and the result is stored in the created
file. A detailed explanation about a practical static network
coding implementation based on XOR operation is given in
[5].

B. Dynamic network coding
Unlike the static network coding, in dynamic network

coding model we have incorporate a coordinator server, which
assigns the different roles to the peers in order to avoid its
saturations and reach a dynamic collaboration in the system.
Figure 4 shows a collaborative scheme with a coordinator
server. In this case, coordinator server there are two matrices.
First matrix stores the address of all the different peers within
the network and second matrix stores the role of peers during
the network coding process. In our scheme, each peer has six
different roles which are source1, source2, cipher, distributor,
receiver1 and receiver2. Second matrix also saves role history
for each peer in order to avoid its saturation. Figure 5 shows
these six different types of roles in each peer.

Dynamic network coding works as follows. When the
coordinator server receives a request, it automatically assigns

Figure 2. Example of a multi-source scheme

Figure 3. A multi-source scheme organized to implement network
coding

380

roles to the peers that are within the network. For this, first we
need to get the IP addresses of the receivers. This is possible
when a peer receives a request from the first receiver and the
peer that makes the request sends the IP address of the other
receiving peer with information of the sources where the
wished file by the receiving peers is available. Once the
sources and receivers are available, the server obtains the peers
that are not present in the running processes and makes two
selections at random to obtain two IPs. Then, one peer is
assigned as encoder while the other peer is assigned as a
distributor. When all peers have been obtained, the server
stores information from them in the process matrix and creates
threads for the source peers to notify their role. When peers
finish their roles within the system, the server creates a thread
for the encoder peer which sends a notification to the server
who creates a thread for the distributor peer. Then, server
creates two threads for the receivers peers in order to notify
their role and verify that they can obtain both original files.
Finally, the server frees all peers that were inside the process.

V. EVALUATION AND RESULTS

 To evaluate our dynamic network coding for a
collaborative multi-source system, we have realized different
tests which consisted in executing two network coding
processes in a network formed by six peers and four files. All
files have the same size of 32 MB. We have compared the
results obtained from our dynamic network coding approach
with results obtained using the static network coding approach.

Our first experiment evaluates a multi-source collaborative
system using static network coding. In this test the roles of the
peers are indicated in Table I.

TABLE I. ROLE OF THE PEERS USING STATIC NETWORK CODING

Peer Role (process 1) Roles (process 2)

Node 1 Source 1 Source 2

Node 2 Receiver 1 Receiver 2

Node 3 Distributor Distributor

Node 4 Encoder Encoder

Node 5 Source 2 Source 1

Node 6 Receiver 2 Receiver 1

In table I we can see that some peers have the same role,
especially the peers with the roles of distributor and encoder.
The responsible peer for playing the role of coding can present
saturation by having the same role assigned to it at the same
time, which may imply that in case there are more network
coding processes at the same time this node could stop
working. The required time for each process is resumed in
table II.

TABLE II. REQUIRED TIME FOR EACH PROCESS

Process Time (seconds)

1 10.2

2 11.1

Our second experiment evaluates a multi-source
collaborative system using dynamic network coding. In this
scenario, network coding is performed in a dynamic way by the
coordinating server. In the table III, we can see the roles that
were assigned to the peers. Although some peers play robust
roles in both processes, they do not do it at the same time,
which implies that they do not become saturated, as well as the
roles of encoder and distributor are dynamically assigned.
Results obtained in this evaluation are shown in table IV.

Comparing both systems, we can get benefits by
incorporating a coordinator server in the dynamic network

Figure 5. Interaction between peers and the server for dynamic
network coding

Figure 4. A multi-source scheme with a coordinator server

381

coding approach. We can see that process 1 reduces its time in
around 9%, while process 2 reduces its time around 25%. It is
important to mention that the sources and the receivers are
roles that do not depend on the coordinator server. In other
words, the requesting peer defines these roles implicitly when
requesting the files it wants and when mentioning the second
receiving peer. However, the roles of encoder and distributor
are completely dynamic, which implies an improvement within
the system. Also the coordinator server when managing the
roles of the peers implies a lot of gains in different areas. It
avoids saturating the peers which implies that it prevents them
from working and allows dynamism within the peers
improving times.

TABLE III. ROLE OF THE PEERS USING DYNAMIC NETWORK CODING

Peer Role (process 1) Role (process 2)

Node 1 Source 2 Source 2

Node 2 Receiver 1 Receiver 2

Node 3 Distributor Encoder

Node 4 Source 1 Source 1

Node 5 Encoder Distributor

Node 6 Receiver 2 Receiver 1

TABLE IV. REQUIRED TIME FOR EACH PROCESS

Process Time (seconds)

1 9.3

2 8.6

VI. CONCLUSIONES

Network coding has had a positive impact on modern
communication networks, and several research areas have
reported different benefits when using network coding in their
respective projects. In this work, we have presented and
evaluated a network coding scheme base on XOR operation
with a dynamic assignation of roles. This mean all nodes in the
networks can perform network coding. This concept introduces
several benefits in a collaborative system because the nodes not
only share files but also processing capacity is shared by all
participating peers in the system. There is also a better load
balancing respect to processing capacity of all peers. Results
report benefits respect to reduction of distribution times of
contents in a collaborative system. Our work is in progress. As
future work, we plan to combine machine learning techniques
with our dynamic network coding approach in order to
improve the system performance by doing an optimal tasks
assignment in each peer. We also plan to implement algorithms
to synchronize the matrices and pass all the matrices to a
distributed database. The system can also be made more robust
by implementing some security mechanisms.

REFERENCES
[1] H. Pucha, G. d. Andersen, and M. Kaminsky, “Exploiting Similarity for

Multi-Source Downloads Using File Handprints,” 4th USENIX NSDI
'07, Cambridge, MA, USA April 2007.

[2] F. A. López-Fuentes, and E. Steinbach, “Multi-source video multicast in
peer-to-peer networks,” IEEE International Symposium on Parallel and
Distributed Processing (IPDP 2008), pp. 1- 8, Miami, FL, USA, 2008.

[3] R. Ahlswede, N. Cai, S.-Y. Li, and R. W. Yeung, “Network information
flow,” IEEE Trans. Inform. Theory, 46, 1204–1216, 2000.

[4] J. Mendoza-Almanza, and F. A. López-Fuentes, “Collaborative Multi-
source Scheme for Multimedia Content Distribution,” WITCOM 2016,
Silao, Gto. México, 2016.

[5] J. Mendoza-Almanza, F. A. López-Fuentes, R. Hasimoto-Beltran,
“Practical Network Coding for Multi-source Scenarios,” Smart
Technology, Springer, pp. 141-148, 2018.

[6] L. Keller, E. Atsan, K. Argyraki and C. Fragouli, “SenseCode: Network
Coding for Reliable Sensor Networks,” Tech. Rep. 2009, Ecole
Polytechnique Federale Lausanne (EPFL). Last updated July, 2010.

[7] P. Chou, Y. Wu and K. Jain, “Practical network coding,” 51st Allerton
Conf. Communication, Control and Computation, Monticello, IL, USA,
2003.

[8] C. Gkantsidis and P. R. Rodriguez, “Network Coding for Large Scale
Content Distribution,” IEEE INFOCOM 2005, Miami, FL, USA, pp.
2235–2245, 2005.

[9] J. K. Sundararajan, D. Shah, M. Medard, M. Mitzenmacher and J.
Barros, “Network coding meets TCP,” IEEE INFOCOMM 2009, Rio de
Janeiro, Brazil, 280–288, 2009.

[10] F. Jamil, A. Javaid, T. Umer, E. and M. H. Rehmani, “A comprehensive
survey of network coding in vehicular ad-hoc networks,” Wireless
Networks, 23(8), pp. 2395–2414, 2017.

[11] L. Keller, E. Atsan, K. Argyraki, and C. Fragouli, “SenseCode: Network
Coding for Reliable Sensor Networks”, Tech. Rep. 2009, Ecole
Polytechnique Federale Lausanne (EPFL). Last updated July, 2010.

[12] O. Gnawali, R. Fonseca, K. Jamieson, D. Moss and P. Levis,
“Collection tree protocol”, 7th ACM Conf. Embedded Netw. Sensor Sys.
SenSys, Berkeley, CA, USA, 2009.

[13] P. Levis, N. Lee, M. Welsh, and D. Culler, “TOSSIM: Accurate and
scalable simulation of entire TinyOS applications”, First ACM Conf.
Embedded Netw. Sensor Sys. SenSys, Los Angeles, CA, USA, 2003.

[14] L. Lima, S. Gheorghiu, J. Barros, M. Medard, and A. Toledo-López,
“Secure network coding for multi-resolution wireless video streaming”,
IEEE J. Selec. Areas Commun., vol. 28, no. 3, pp. 377–388, 2010.

[15] S. McCanne, S. Floyd, and K. Fall, “The network simulator, ns-2”
[Online]. Available: http://www.isi.edu/nsnam/ns

[16] D. Nguyen, T. Nguyen, and X. Yang, “Multimedia wireless transmission
with network coding,” Packet Video, Lausanne, Switzerland, pp. 326–
33, 2007.

[17] F. Chen, T. Xiang, Y. Yang, and S. S. M. Chow, “Secure cloud storage
meets with secure network coding,” IEEE INFOCOM, 2014.

[18] D. P. Wu et al., "Dynamic coding control in social intermittent
connectivity wireless networks", IEEE Trans. Veh. Technol., vol. 65,
no. 9, pp. 7634-7646, Sep. 2016.

[19] C. Xu, P. Wang, C. Xiong, X. Wei, G.-M. Muntean, “Pipeline network
coding-based multipath data transfer in heterogeneous wireless
networks”, IEEE Trans. Broadcast., vol. 63, no. 2, pp. 376-390, Jun.
2017.

[20] M. Epping, H. Kampermann and D. Bruß, “Robust entanglement
distribution via quantum network coding”, New Journal of Physics,
DPG/IOP, Vol.18, pp. 2016.

[21] H. Kobayashi, F. L. Gall, H. Nishimura, and M. Rötteler, “Perfect
quantum network communication protocol based on classical network
coding,” IEEE International Symposium on Information Theory, pp.
2686–2690, 2010.

382

Practical Network Coding for Multi-source
Scenarios

Javier Mendoza-Almanza1, Francisco de Asís López-Fuentes1(&),
and Rogelio Hasimoto-Beltran2

1 Departament of Information Technology, Universidad Autónoma
Metropolitana-Cuajimalpa (UAM-C), Av. Vasco de Quiroga 4871, Cuajimalpa,

Santa Fe, 05348 Mexico City, Mexico
flopez@correo.cua.uam.mx

2 Centro de Investigación en Matemáticas (CIMAT) A. C., Jalisco S/N,
Col. Valenciana, 36023 Guanajuato, Gto, Mexico

hasimoto@cimat.mx

Abstract. Network coding is a proposed technique for improving network
capacity. This novel concept has been mainly oriented to increase throughput
and reliability of communication networks. Network coding is implemented in
the intermediate nodes before forwarding the encoded packets to the end nodes.
The received packets are decoded in the end nodes in order to recovery the
original transmitted data (video data in our case). In this work, we investigate
the performance of network coding in collaborative multi-source scenarios with
heterogeneous resources (video, image, audio, pdf files). Collaborative
multi-source schemes are very important for critical multimedia services
because multimedia content consumes an important amount of resources in the
communication networks. A multi-source scheme is a useful solution when
different parts of a multimedia content is generated or stored in two or more
sites. Our evaluation compares the performance of a P2P networking with
network coding against a client-server communications. Results show great
benefits on using network coding scheme in collaborative multi-source scheme.

Keywords: P2P networks � Content distribution � Distributed systems

1 Introduction

Several content distribution infrastructures have emerged in response to high demand
for multimedia contents. Most of these infrastructures have based on central servers,
which exhibit several limitations and a reduced collaboration between requesting
nodes. Because the multimedia content consumes a large amount of resources in a
communication system, collaboration among requesting nodes play an important role.
In this context, peer-to-peer (P2P) networks have emerged as practical solution for
constructing collaborative infrastructures. P2P systems have generated great interest in
the research community who find in these systems a fast and efficient way to deliver
movies, music or software files [1–3]. In a P2P system, the users interact directly as a
way to exchange their resources and services through the Internet. Multimedia content

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018
F. Torres Guerrero et al. (Eds.): MTYMEX 2017, LNICST 213, pp. 141–148, 2018.
https://doi.org/10.1007/978-3-319-73323-4_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-73323-4_14&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-73323-4_14&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-73323-4_14&domain=pdf

requires large storage spaces, and large multimedia contents (e.g. movies) often exceed
the storage capacity of a personal device in traditional centralized network architecture.
A P2P system on the other hand, distributes its load and duties between all participating
peers. Multi-source schemes are used in order to solve these requirements. Multi-source
schemes are also required when content is produced from multiples sites [4, 5]. For
example, in soccer match. On the other hand, in a multi-source scheme, each source
can distribute different video sequences to all requesting peers. How much the source
can redistribute depends on the available upload capacity. At the same time, each
requesting peer forwards the video directly received from a source to the rest of the
peers. Again, the amount of redistributed content depends on the peers’ upload
capacity. The upload capacities of the sources are divided equally among the different
video streams. This paper presents a practical implementation of network coding using
XOR operations in a multi-source scenario based on P2P infrastructures [4].
Multi-source scheme disseminates multimedia contents from multiple sources to
multiple requesting peers. Initially, sources distribute the original content to an inter-
mediate peer, where network coding is applied. After this, the intermediate node sends
the encoded content to the requesting peers. Original content is recovered in each
requesting peer by using XOR operation to decode the encoded packets.

The rest of this paper has the following organization. In Sect. 2, we give a brief
introduction to network coding. Section 3 presents a P2P multi-source scheme in which
network coding is tested. A practical implementation of our multi-source scheme is
described in Sect. 4. Our paper concludes in Sect. 6.

2 Network Coding Overview

Ahlswede et al. [6] introduced network coding as a new technique related to infor-
mation flow in the communication networks. This technique employs coding at the
intermediate nodes in the network to increase the flow without exceeding the links
capacity. Network coding is inspired by the Max-Flow Min-Cut theorem, which states
that [6]: “The maximum amount of flow from the source to the destination nodes equals
the minimum capacity required to remove flow from the network that cannot pass from
source to destination”. Authors represent the network as a directed graph G = (V, E),
where the network nodes are represented by V, and the edges E represent the com-
munication links. The link capacity is of one data unit per unit time. The source node is
a node without any incoming edge. In a single-source multicast session, the source
node s 2 S transmits information at rate R to all receivers t 2 T, and the maximum
multicast information rate in this scenario can be achieved only by allowing coding at
intermediate nodes [6]. This maximum multicast rate can be given by finding the
capacity through the previously described Max-Flow Min-Cut theorem, which relates
the maximum information flow through a network with the minimum cut capacity.

Figure 1 presents a scenario of a butterfly network with a source node and two
receiver nodes. Figure 1(a) shows the capacity of each edge. We can observe that the
value of the maximum flow of S to any receiver, either R1 or R2 is equal to two.
Therefore, in Fig. 1(b) source S can send two bits, b1 and b2, to R1 and R2 simulta-
neously. In this scheme, each intermediate node only replicates and sends out the bit(s)

142 J. Mendoza-Almanza et al.

received from upstream. On the other hand, Fig. 1(c) shows the same network con-
figuration, except that network coding is implemented. Here, the operator ⊕ denotes
the sum module 2. Thus, the receiver R1 can recover the two bits, b1 and b2, except
that b2 must be retrieved from b1 ⊕ b2. Similarly, R2 can recover the two bits. In this
example, network coding is applied at node 3. Another important point is that the
multicast rate increases, because in traditional transmission the rate is 1 bit/time unit,
whereas applying network coding the rate increases to 2 bits/time unit.

In contrast to traditional ways of operating a network that try to avoid collisions of
data streams as much as possible, this elegant principle implies a plethora of surprising
results. One of the most exciting opportunities of the approach is the use of random
mixing of data streams, thus freeing up the symmetrizing properties of random coding
arguments in network analysis.

The most common benefits of using network coding in a communication network
are [7, 8]: saving bandwidth, improved system throughput, and reduced delays. Mul-
timedia application requires high data rates, low-latency and low packet loss rates,
which represent a significant challenge for the design of future network architectures. In
this scenario, network coding can help to improve the performance of the multimedia
systems.

Fig. 1. Communications network: (a) capacity of the edges, (b) traditional approach and
(c) approach with network coding.

Practical Network Coding for Multi-source Scenarios 143

3 Multisource Scheme

Multi-sources model studied in this work is shown in Fig. 2. Each source S distributes
its initial content to different requesting peers. Our solution assumes that sources are
independent to each other. Different videos are distributed from each source. Source S1
distributes video 1, while S2 distributes video 2. Different types of files such as music
files, photos files, PDF files, and other type of files can be distributed in this multi-
source scheme. Network coding is implemented in this multi-source scheme network in
order to improve the distribution time.

Initially, each server sends its content to requesting peer. After a peer receives a
type of file, it can be distributed to the rest of requesting peers. Thus, each source
distributes only its files in the first stage. In the second stage, files are redistributed
among all requesting peers. Each server has two functions. First function is to distribute
the original content, and second function is to maintain information about peers with
distributed files. This information is stored in a database in each server, which is
periodically updated. In this way, a server reduces its workload. When new peers arrive
to system, information about IP address of each peer and its shared content can be
obtained from any server.

In a multi-thread application, different processes can be executed at the same time
concurrently. The number of processes is variable and depends on the amount of
connections that are established. In this work, we have used multi-thread to improve the
performance of our system. Coordinator peer is the main thread in each peer, and it is
responsible for synchronization and control of the others threads. Client_thread_1 is
responsible for connecting with the main servers. Thus, this thread requests a content
and receive it from the source. Client_thread_1 also receives the table with information
of IP address and name (ID) of all requesting peer in the system from the source. Each
peer uses the database with IP address and name of peers to establish the network
structure. A peer can receive multimedia contents from the main sources.

Fig. 2. Multi-source model

144 J. Mendoza-Almanza et al.

4 Implementation

In this section, we implement our proposed multisource network coding scheme by
considering two main objects, entities and servers. The entities are the counterpart of
peers (as discussed in Sect. 3), and the servers are the ones that store information about
connected peers and files to be shared in the network. There are although different kind
of servers depending on the information and type of file they are capable to distribute
and store. There is one server for distributing video content, another for distributing
images, or music, or pdf files, etc. In this way, we are representing the concept of
multisource with different kind of source-data servers.

Each server manages an information matrix that stores the IP addresses of all nodes
(servers and peers) in the network, along with their corresponding content or files that
can be shared to the rest of the nodes. When a server receives either a synchronization
or file-sharing request from a node, a communication thread is created from the server
to the node for each request and for each file to be shared. Immediately after this file
sharing process, the server sends to the node its information matrix, so that the node
can communicate with the different servers in the network to request a particular
content. If the node just wants to synchronize, the server only shares the
information-matrix containing the updated information of the current content and nodes
in the network. As mentioned above, in our scheme each server behaves in the same
way but with different type of data or content.

A peer is an entity or application running on each node of the centralized P2P
network. The peer application sends and receives files at the same time, in addition to
performing the network coding process. A peer node in our architecture, establishes
communication with all sources and servers to distribute and receive content, as well as
to gather information about all contents to be shared in the network. The content
synchronization among all peer entities is permanent in order to keep all the infor-
mation matrix updated in the entire network. Once the information matrix has been
updated, peers can request content again. However, in this paper our tests are made
with a static P2P infrastructure, where roles for each peer are fixed.

An important function of peer nodes is network coding. In order to perform this
task, several peer entities are involved in the process for which, each peer has to create
different threads with concrete tasks. Assume that two data bits a and b are multicast
from sources A and B to nodes E and F as depicted in Fig. 3. We assume that nodes E
and F start a request, which is attended by the servers A and B, and the intermediate
nodes. Nodes A and B send file bits a and b respectively to common connected peer C.
In this operation, C is the one that initiates the file request by creating two independent
thread process, one for each peer. C initiates the coding process of the received files
received by applying the XOR operation on the two bit-streams to create new coded file
represented by ai � bi. When the length of the involved files is different, the file counter
with the smallest length is passed on to intermediate C and D) and end peers (E and F)
for the coding and decoding processes respectively. A subset of the peers who received
the coded files, requests the original file from peers that received the original files from
the source. In this case, E receives file a from A and F receives b from B. The coded

Practical Network Coding for Multi-source Scenarios 145

and original files are XOR to obtained the other original file, b in the case of peer E and
a in the case to peer F. In Fig. 3, t indicates the smallest file size.

If a particular peer wants to be excluded from participating on the network coding
and receiving content, it only maintains a thread process that respond requests from
other peers (e.g. a content).

5 Evaluation

We have evaluated the operation of our prototype in a local network in our campus.
Both servers and peers work correctly. Files are sent from each dedicated server and
each requesting peer correctly, and network coding is done in the intermediate nodes.
In our experimental set-up, we implemented two different performance tests for content
distribution: (a) client-server (where only one server serves the content to all clients) vs.
P2P architectures, and (b) client-server architecture vs. P2P with network coding
architectures. In the first case (a), we compare the delivery time in order to prove the
content distribution load between these two architectures. Table 1 presents the time it

Fig. 3. Network coding application in multi-source model

Table 1. Distribution time in a client-server architecture

Client 1 Client 2

File 1 1.54 1.59
File 2 1.56 2.02
File 3 2.02 2.03
File 4 2.04 2.04
Total 7.56 8.08

146 J. Mendoza-Almanza et al.

takes to distribute (from sender to receiver node) 4–28 MB files in a client-server
architecture:

Next, Table 2 presents the corresponding delivery times for a P2P architecture:

Results show that P2P architecture delivers the content in a shorter time since each
peer behaves as both client and server, while the client-server architecture may saturate
the server if many requests are performed at the same time.

We now compare the P2P with network coding against client-server architecture
(Table 1). Let us first show the transmission of two files in a pure P2P architecture
(Table 3) against P2P with network coding (Table 4):

It can be observed that P2P with network coding is the most efficient architecture
for content delivery, since we are sending two files at the same time.

6 Conclusions

There is currently a high demand for multimedia content, and collaboration among
requesting nodes play an important role. In this paper, we have evaluated the perfor-
mance of a multi-source scheme using network coding to distribute multimedia content
from many sources to many requesting peers. Implemented is deployed on a
peer-to-peer network. Using this proposed approach, the sources can distribute their

Table 2. Distribution time in a P2P architecture

Peer 1 Peer 2

File 1 0.40 0.41
File 2 0.41 0.38
File 3 0.31 0.24
File 4 0.33 0.33
Total 2.25 2.16

Table 3. Distribution time in pure P2P architecture

Receiver 1 Receiver 2

File 1 0.41 0.42
File 2 0.42 0.42
Total 1.23 1.24

Table 4. Distribution time in pure P2P architecture with network coding

Receiver 1 Receiver 2

File 1 y File 2 0.47 0.45
Total 0.47 0.45

Practical Network Coding for Multi-source Scenarios 147

workload between all requesting peers, and the system can improve its performance.
Our scheme uses threads to establish collaboration connections with other peers. The
number of threads is variables and depends on the amount of established connections.
In each peer, a coordinator thread deals with the incoming requests and creates the rest
of threads that handle the requests.

Our purpose in this work is to develop a P2P multisource network with network
coding capabilities, which at this point it works fine. There exist some details to be
improved, such as the use of Linear Network Coding (LNC). LNC would improve the
efficiency of file transmission and would eliminate the use of some transmission
channels in which we could only send ciphered buffers based on Galois fields to get
back the original file. Finally, we can have a special server in the network to decide the
peer nodes who will take part of the network coding task and at the same time the peer
nodes who will perform the coding process at the same time.

References

1. Milojicic, D., Halogeraki, V., Lukose, R., Nagaraja, K., Pruyne, J., Richard B., Rolling, S.,
Xu, Z.: Peer-to-Peer Computing. HP Labs Technical report HPL-2002-57 (2002)

2. Sayit, M., Demirci, S., Kaymak, Y., Tunali, E.: Adaptive, incentive and scalable dynamic tree
overlay for P2P live video streaming. Peer-to-Peer Netw. Appl. 9, 1074–1088 (2016)

3. Kuo, J.L., Shih, C.H., Ho, C.Y., Chen, Y.C.: Advanced bootstrap and adjusted bandwidth for
content distribution in peer-to-peer live streaming. Peer-to-Peer Netw. Appl. 8(3), 414–431
(2015)

4. Mendoza-Almanza, J., López-Fuentes, F.A.: Collaborative multi-source scheme for multi-
media content distribution. In: WITCOM 2016, Silao, Gto. México (2016)

5. López-Fuentes, F.A., Steinbach, E.: Multi-source video multicast in peer-to-peer networks. In:
Proceedings of the IEEE International Symposium on Parallel and Distributed Processing,
Miami, FL, USA, pp. 1–8 (2008)

6. Ahlswede, R., Cai, N., Li, S.-Y., Yeung, R.W.: Network information flow. IEEE Trans.
Inform. Theory 46, 1204–1216 (2000)

7. Gkantsidis, C., Rodriguez, P.R.: Network coding for large scale content distribution. In:
IEEE INFOCOM 2005, Miami, FL, USA, pp. 2235–2245 (2005)

8. Keller, L., Atsan, E., Argyraki, K., Fragouli, C.: SenseCode: Network Coding for Reliable
Sensor Networks, Technical report 2009, Ecole Polytechnique Federale Lausanne (EPFL),
July 2010

148 J. Mendoza-Almanza et al.

Collaborative Multi-Source Scheme

for Multimedia Content Distribution

Javier Mendoza Almanza, Francisco de Asís López-Fuentes

Universidad Autónoma Metropolitana-Cuajimalpa,

Departament of Information Technology, Mexico City,

Mexico

flopez@correo.cua.uam.mx

Abstract. Demand for multimedia contents has increased in recent years, and

several distribution services have emerged. Many of these multimedia

distribution services are based on central servers, which introduce several

limitations related with costs, dependence, performance or scalability. This paper

presents a collaborative scheme for multimedia content distribution.

Collaborative infrastructures for multimedia services are critical because

multimedia contents have an import consume of resources in the communication

networks. P2P networks have emerged as promising solution to implement

collaborative infrastructures. Multi-source schemes are a practical solution when

different parts of multimedia content is generated or stored in two or more sites.

We have used a P2P network to implement a practical distribution prototype of

our collaborative multi-source scheme. Our evaluation shows as peers share

storage capacity, contents and bandwidth capacity, while server is released from

this workload.

Keywords: P2P networks, content distribution, distributed systems.

1 Introduction

During recent years, several content distribution infrastructures have emerged in

response to high demand for multimedia contents. Most of these infrastructures have

based on central servers, which present several limitations and present a reduced

collaboration between requesting nodes. Because the multimedia content consumes a

large amount of resources in a communication system, collaboration between

requesting nodes play an important role. In this context, peer-to-peer (P2P) networks

have emerged as practical solution for constructing collaborative infrastructures. P2P

systems have generated great interest in the research community who find in these

systems a fast and efficient way to deliver movies, music or software files [1, 14, 15].

In a P2P system, the users interact directly as a way to exchange their resources and

services through the Internet. Multimedia content requires large storage spaces, and

large multimedia contents (e.g. movies) often exceed the storage capacity of a personal

device. Multi-source schemes are used in order to solve these requirements. Multi-

source schemes are also required when content is generated from multiples sites. For

51

ISSN 1870-4069

Research in Computing Science 127 (2016)pp. 51–57; rec. 2016-08-12; acc. 2016-09-15

example, in soccer match. This paper reviews different content distribution schemes,

and introduces a collaborative distribution scheme based on P2P networks. In a P2P

network, a node can take the role of both a server and of a client at the same time. Thus,

when a new peer arrives to the system, the demand in the system is increased, but the

system’s overall capacity is increased too. A P2P system distributes its load and duties

between all participating peers, which is not possible in a system based on central

servers.

P2P networks are becoming more and more popular today (they already generate

most of the traffic in the Internet). For instance, P2P systems are very used for file

sharing and distribution; some examples are Bittorrent [2], Tribbler [3], eMule [4],

GridCast [11], etc. Main technical problem is that peers connect and disconnect with

high frequencies, in an autonomous and completely asynchronous way. This means that

the resources of the network as a whole are also highly variable, and thus, that the

network must be robust face to these fluctuations. In order to face the high dynamicity

of such a system, we explore a multi-path approach where (i) the stream is decomposed

in some way into several flows; (ii) each client receives those flows following different

paths and sent from different other clients.

On the other hand, in a multi-source scheme, each source can distribute different

video sequences to all requesting peers. How much the source can redistribute depends

on the available upload capacity. At the same time, each requesting peer forwards the

video directly received from a source to the rest of the peers. Again, the amount of

redistributed content depends on the peers upload capacity. The upload capacities of

the sources are divided equally among the different video streams. In this paper, we

present a collaborative multisource scheme based on P2P networks. In this paper is

proposed a multi-source scheme to disseminate multimedia content from multiple

source to multiple requesting peers. Initially, sources distribute the original content to

each requesting peer. After the requesting peers receive the content, they can

redistribute this content to other peers in a collaborative way.

The rest of this paper has the following organization. In Section 2, we present

information about different multi-source schemes based on P2P networks. Section 3

presents our proposed model. A practical implementation of our multi-source scheme

is described in Section 4. Our paper concludes in Section 5.

2 Related Work

Dissemination information to a large group of nodes from many sources is fundamental

in many systems and applications. Multi-source P2P multicast applications recently

have been used for collaborative environments such as conferencing or multi-player

games. A P2P network is an overlay network formed by a group of nodes. P2P systems

maintain their independence of the underlying physical network by using this overlay

topology. In a P2P network, a company can disseminate information. Thus, content

can be distributed to an audience without the need for any special support from the

network (Jannotti et al 2000), and where the upload capacity of the participating peers

is only considered to forward the content. We can create a collective organizational

knowledge within the organization, or share data and application files between

computers without a dedicated server. However, P2P overlays known as unstructured

52

Javier Mendoza Almanza, Francisco de Asís López-Fuentes

Research in Computing Science 127 (2016) ISSN 1870-4069

and structured overlay show limitations for multi-source multicast such as scalability

[6], large overhead [7] or complex protocols [8].

Several approaches for content distribution from multiple sources to a single receiver

can be found in the literature. Authors in [9] exploit the similar source concept to

significantly improve the download time of a file from multiple sources to one receiver.

Push is proposed in [10] as an efficient generic push-pull dissemination protocol. Pulp

exploits the efficiency of push and pull approaches, such that it presents achieve

reasonable latency and presents a low overhead by limiting redundant messages. In a

multi-source environment, sources can provide conflicting values (false or true

information). To deal with this problem, authors in [12] propose Datafusion, a novel

solution to find true values from conflicting information when in the system there are a

large number of information sources. In [13] is proposed a framework for video

delivery from multiple sources to multiple receivers using P2P networks. In this work,

authors consider that sources are requesting peers too. This work introduces a concept

called helper peer, which is not interested in receiving the content and just contribute

their resources during distribution.

3 Proposed Model

Our proposed model with multiple sources is shown in Figure 1. Each source distributes

its initial content to different requesting peers. Our solution assumes that sources are

independent of each other. Different type of files are distributed from each source.

Source S1 distributes video files, while S2 distributes music files, S3 distributes photos

files and S4 distributes PDF files. S5 is used to distribute other type of files.

Initially, each server sends its content to requesting peer. After a peer receives a type

of file, it can be distributed to rest of requesting peers. Thus, each source distributes

only its files in the first stage. In the second stage, files are redistributed among all

requesting peers. Each server has two functions. First function is to distribute the

original content, and second function is to maintain information about peers with

distributed files. This information is stored in a database in each server, which is

periodically updated. In this way, a server reduces its workload. When new peers arrive

Fig. 1. Proposed model.

53

Collaborative Multi-Source Scheme for Multimedia Content Distribution

Research in Computing Science 127 (2016)ISSN 1870-4069

to system, information about IP address of each peer and its shared content can be

obtained from any server.

In a multi-thread application, different processes can be executed at the same time

concurrently. The number of processes is variable and depends on the amount of

connections that are established. In this work, we have used multi-thread to improve

the performance of our system. Figure 2 shows threads active in each peer. Coordinator

peer is the main thread in each peer, and it is responsible for synchronization and control

of the others threads. Client_thread_1 is responsible for connecting with the main

servers. Thus, this thread requests a content and receive it from the source.

Client_thread_1 also receives from the source the table with information of IP address

and name (ID) of all requesting peer in the system. In this way, if a requested content

is available in a requesting peer, then the content is downloaded from this peer.

Client_thread_2 is responsible for receiving content from one or more peers in the

system. To request contents from other peers, each peer uses the database with IP

address and name of peers. A peer can receive multimedia contents from the main

sources and from other requesting peers. These contents are stored in a database. Using

this information each peer can work as server and redistribute information to other

peers. Server_thread is responsible of this task in each peer.

4 Implementation

We put in practice our scheme by using different entities and servers, these entities are

peers and servers. The servers store information about the connected peers and the file

shared in each peer. There are different dedicated servers and each of them gives out

and stores information about different types of files, which means there is a server for

video another one for images another for music, another for pdf, and another one for

any other kind of file so that we can do it multi-source. In this work, two main

Fig. 2. Peer model.

54

Javier Mendoza Almanza, Francisco de Asís López-Fuentes

Research in Computing Science 127 (2016) ISSN 1870-4069

applications called peer and server has been implemented. Each node in the P2P

network runs a peer application, such that each node must receive and send files at the

same time. To reach time goal, peer application performs both tasks simultaneously.

Peer application is formed by two parts: a server and a client. Server part always is

listening in order to attend to other peers, while client part makes different functions

such as uploading files, display files and exit. Peer application is placed in each node

of the P2P network (in each individual computer). A peer is an entity that sends and

receives files at the same time. Peer application creates different threads when is

running. First thread is to manipulate the server, and then other threads are created to

connect them to the different servers. Each peer inserts its IP address, the amount of

shared files with their names. Each server sends to all peers the information about the

different connected peers. Each server sends updated information about the connected

peer to all peers in the system. Figure 3 shows the flow diagram for peer application.

Here, we can see the different steps developed by this application.

Our second application is the server. This application is responsible to give

information about the peers in the system and store all files to be shared. A server is

receiving requesting from peers while is sending files to them. While a server

application is running, a socket is listening and waiting for new requests. When a new

request from a peer is received in the server, a new thread is created to attend this

request. Each server has a global matrix where IP address and the files names that peers

want to share are registered. For each file to be shared by a server is created a thread

toward that peer in order to store that file. Peer receives the matrix with information of

connected peers and the shared files by these peers. An experimental prototype is

implemented using five different servers. Each server offers a dedicated service, such

that each server manages a specific type of file: video, music, images, PDF and one for

other kind of files. Main steps for server application is shown in Figure 4. A matrix is

Fig. 3. Flow diagram for peer application.

55

Collaborative Multi-Source Scheme for Multimedia Content Distribution

Research in Computing Science 127 (2016)ISSN 1870-4069

used to store the name of the shared files and the IP address of the peers in order to

request files to different peers.

We have evaluated the operation of our prototype in a local red of our campus. Both

servers and peers work correctly. Files are sent from each dedicated server and each

requesting peer correctly, and after this, each peer can forward the received files to rest

of peers. To compare performance of our collaborative P2P scheme against a

distribution scheme based on client-server, we have measured the distribution time to

requesting peers. Our work is in progress, and preliminary tests have been done. First,

we distribute four files of 28MB to two clients from a server at same time. Client 1

receives the four files from the source in 7.56 minutes, while client 2 receives the four

files from the source in 8.08 minutes. On the other hand, using P2P architecture, peer

1 receives the four requested files in 2.25 minutes, while peer 2 receives the four files

in 2.16 minutes. Preliminary results show that P2P architecture presents a best

performance than architecture based on client-server because. This is because the server

is congested to send all files, while in the P2P scheme all nodes collaborate to distribute

content faster. However, obtained measurements may change depending on the

variation of the network. We can continue testing our collaborative transmission

scheme in order to make more efficient our proposal.

5 Conclusions

There is currently a high demand for multimedia content, and collaboration among

requesting nodes play an important role. In this paper has been proposed a collaborative

multi-source scheme to distribute multimedia content to many requesting peers.

Collaboration between peers is implemented by using a peer-to-peer network. Our

framework is suited for collaborative environments, where the system inherently has

multiple senders. Using this proposed approach, the sources can distribute their

workload between all requesting peers, and the system can improve its performance.

Our collaborative scheme uses threads to establish collaboration connections with other

peers. The number of threads is variables and depends on the amount of established

Fig. 4. Flow diagram for server application.

56

Javier Mendoza Almanza, Francisco de Asís López-Fuentes

Research in Computing Science 127 (2016) ISSN 1870-4069

connections. In each peer, a coordinator thread deals with the incoming requests and

creates the rest of threads that handle the requests. Our current effort is focused to

complete the implementation of our proposed framework for video streaming sessions.

References

1. Milojicic, D., Halogeraki, V., Lukose, R., Nagaraja, K., Pruyne, J., Richard, B., Rolling,

S., Xu, Z.: Peer-to-Peer Computing. HP Labs Technical Report HPL, 57 (2002)

2. Cohen, B.: Incentives to build robustness in BitTorrent. Technical report,

http://www.bittorrent. com/bittorrentecon.pdf (2003)

3. Pouwelse, A., Garbacki, P., Wang, J., Bakker, A., Yang, J., Iosup, A., Epema, D. H.,

Reinders, M., Van Steen, M. R., Sips, H.: TRIBLER: a social-based peer-to-peer system.

Journal Concurrency and Computation: Practice & Experience, Vol. 20, No. 2, pp. 127–

138 (2008)

4. The eMule Project: https://www.emule-project.net (2016)

5. Jannotti, J., Gifford, D. K., Johnson, K. L., Kaashoek, M. F., O’Toole Jr., J. W.: Overcast:

Reliable Multicasting with an Overlay Network. In: Proc. of the 4th Symposium on

Operating System Design and Implementation (OSDI’00), San Diego, CA, USA, pp. 197–

212 (2000)

6. Chawathe, Y.: Scattercast: An Adaptable Broadcast Distribution Framework. In: ACM

Multimedia Systems Journal Special Issue on Multimedia Distribution (2002)

7. Ripeanu, M., Foster, I., Iamnitchi, A.: Mapping the Gnutella Network: Properties of Large-

Scale Peer-to-Peer Systems and Implications for System Design. Internet Computing

Journal, Vol. 6 (2002)

8. Bharambe, A. R., Rao, S. G., Padmanabhan, V. N., Seshan, S., Zhang, H.: The Impact of

Heterogeneous Bandwidth Constraints on DHT Based Multicast Protocols. In: Proc. of the

4th International Workshop IPTPS (2005)

9. Pucha, H., Andersen, D. G., Kaminsky, M.: Exploiting Similarity for Multi-Source

Downloads Using File Handprints. In: Proc. of the 4th USENIX NSDI 07, Cambridge, MA,

USA (2007)

10. Felber, P., Kermarrec, A. M., Leonini, L., Riviere, E., Voulgaris, S.: Pulp: An adaptive

gossip-based dissemination protocol for multisource message streams. Peer-to-Peer

Networking and Applications, Springer US (2012)

11. Cheng, B., Stein, L., Jin, H., Liao, X., Zhang, Z.: Gridcast: improving peer sharing for P2P

VoD. In: ACM TOMCCAP (2008)

12. Dong, X. L., Berti-Equille, L., Srivastava, D.: Data fusion: resolving conflicts from

multiple sources. Handbook of Data Quality, pp. 293–318 (2013)

13. López, F. A., Steinbach, E.: Multi-source video multicast in peer-to-peer networks. In:

Proc. of the IEEE International Symposium on Parallel and Distributed Processing, Miami,

FL, USA, pp. 1–8 (2008)

14. Sayit, M., Demirci, S., Kaymak, Y., Tunali, E.: Adaptive, incentive and scalable dynamic

tree overlay for p2p live video streaming. In: Peer-to-Peer Networking and Applications,

pp. 1–15 (2015)

15. Kuo, J. L., Shih, C. H., Ho, C. Y., Chen, Y. C.: Advanced bootstrap and adjusted

bandwidth for content distribution in peer-to-peer live streaming. In: Peer-to-Peer

Networking and Applications, pp 1–18 (2014)

57

Collaborative Multi-Source Scheme for Multimedia Content Distribution

Research in Computing Science 127 (2016)ISSN 1870-4069

